Carbon felt electrode modified by lotus seed shells for high-performance vanadium redox flow battery

被引:47
|
作者
Hu, Zhengyu [1 ,2 ]
Miao, Zhiqiang [3 ]
Xu, Zhizhao [1 ,2 ]
Zhu, Xiaobo [1 ,2 ]
Zhong, Fangfang [1 ,2 ]
Ding, Mei [1 ,2 ]
Wang, Jianhui [4 ]
Xie, Xiaoyin [1 ,5 ,6 ]
Jia, Chuankun [1 ,2 ]
Liu, Jinlong [1 ,7 ]
机构
[1] Changsha Univ Sci & Technol, Coll Mat Sci & Engn, Changsha 410114, Peoples R China
[2] Changsha Univ Sci & Technol, Inst Energy Storage Technol, Changsha 410114, Peoples R China
[3] Shouguang Lianmeng Petrochem Co Ltd, Weifang 262700, Peoples R China
[4] Changsha Univ Sci & Technol, Sch Food & Biol Engn, Changsha 410114, Peoples R China
[5] Hubei Polytech Univ, Sch Chem & Chem Technol, Huangshi 435003, Peoples R China
[6] Jilin Univ, Inst Theoret Chem, Int Joint Res Lab Nanomicro Architecture Chem, Changchun 130023, Peoples R China
[7] Cent South Univ, Coll Chem & Chem Engn, Changsha 410083, Peoples R China
基金
中国国家自然科学基金;
关键词
Vanadium redox flow battery; Biomass lotus seed shell; Carbon felt; Electrochemical performance; Energy efficiency; POROUS BIOMASS CARBON; GRAPHITE FELT; POSITIVE ELECTRODE; NEGATIVE ELECTRODE; NANOFIBER; CATALYST;
D O I
10.1016/j.cej.2022.138377
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Vanadium redox flow batteries (VRFBs) have attracted considerable attentions for their promising applications as large-scale energy storage devices. However, the widespread implementation of VRFBs is still hindered by the severe overpotentials of redox reactions, due to the poor electrochemical activities of conventional carbon felt (CF) electrodes. Herein, we present the fabrication of biomass lotus seed shells-modified CF (Bio-CF) electrode, which exhibits remarkable electrocatalytic effects on both the V2+/V3+ and VO2+/VO(2+ )redox reactions. The influences of auxiliary sucrose concentration and pyrolysis temperature were investigated to optimize the Bio-CF electrodes. Meanwhile, molecular dynamic simulations were employed to verify the experimental data. Furthermore, high performance VRFBs were achieved with the optimized Bio-CF electrode, affording high energy efficiency (83.14 %) and outstanding cycling stability under a current density of 100 mA cm(-2). It is believed that the strategy to improve electrochemical performance of CF modified by cost-effective biomass materials provides a promising route for developing high performance VRFBs.
引用
收藏
页数:8
相关论文
共 50 条
  • [1] CdO-Modified Graphite Felt as a High-Performance Negative Electrode for a Vanadium Redox Flow Battery
    Xiao Qin-Hao
    Wang Lei
    Li Dan
    Jing Wen-Heng
    CHINESE JOURNAL OF INORGANIC CHEMISTRY, 2019, 35 (09) : 1678 - 1686
  • [2] Three-dimensional mesoporous graphene-modified carbon felt for high-performance vanadium redox flow batteries
    Opar, David O.
    Nankya, Rosalynn
    Lee, Jihye
    Jung, Hyun
    ELECTROCHIMICA ACTA, 2020, 330 (330)
  • [3] Graphene coated carbon felt as a high-performance electrode for all vanadium redox flow batteries
    Xia, Lu
    Zhang, Qingfa
    Wu, Chun
    Liu, Yaru
    Ding, Mei
    Ye, Jiaye
    Cheng, Yuanhang
    Jia, Chuankun
    SURFACE & COATINGS TECHNOLOGY, 2019, 358 : 153 - 158
  • [4] Advanced electrode enabled by lignin-derived carbon for high-performance vanadium redox flow battery
    He, Xinyan
    Li, Liangyu
    Yan, Su
    Fu, Hu
    Zhong, Fangfang
    Cao, Jinchao
    Ding, Mei
    Sun, Qilong
    Jia, Chuankun
    JOURNAL OF COLLOID AND INTERFACE SCIENCE, 2024, 653 : 1455 - 1463
  • [5] Carbon Felt Decorated with Carbon Derived from Spent Asphalt as a Low-cost and High-performance Electrode for Vanadium Redox Flow Batteries
    Xu, Zhizhao
    Xu, He
    Hu, Zhengyu
    Wu, Wenze
    Xu, Jian
    Zhong, Fangfang
    Ding, Mei
    Zhu, Xiaobo
    Fu, Hongyuan
    Jia, Chuankun
    CHEMNANOMAT, 2022, 8 (04)
  • [6] Synergistic Effect of Carbon Nanofiber/Nanotube Composite Catalyst on Carbon Felt Electrode for High-Performance All-Vanadium Redox Flow Battery
    Park, Minjoon
    Jung, Yang-jae
    Kim, Jungyun
    Lee, Ho Il
    Cho, Jeaphil
    NANO LETTERS, 2013, 13 (10) : 4833 - 4839
  • [7] NTO laminated graphite felt as high-performance negative electrode for vanadium redox flow batteries
    Liu, Wen-Fei
    Kim, Kue-Ho
    Ahn, Hyo-Jin
    JOURNAL OF ALLOYS AND COMPOUNDS, 2023, 954
  • [8] A high-performance carbon nanoparticle-decorated graphite felt electrode for vanadium redox flow batteries
    Wei, L.
    Zhao, T. S.
    Zhao, G.
    An, L.
    Zeng, L.
    APPLIED ENERGY, 2016, 176 : 74 - 79
  • [9] Controlled synthesis of carbon nanonetwork wrapped graphite felt electrodes for high-performance vanadium redox flow battery
    Lv, Yanrong
    Yang, Yujie
    Gao, Jiayi
    Li, Jin
    Zhu, Wenjie
    Dai, Lei
    Liu, Yongguang
    Wang, Ling
    He, Zhangxing
    ELECTROCHIMICA ACTA, 2022, 431
  • [10] A novel approach for forming carbon nanorods on the surface of carbon felt electrode by catalytic etching for high-performance vanadium redox flow battery
    Abbas, Saleem
    Lee, Hyuck
    Hwang, Jinyeon
    Mehmood, Asad
    Shin, Hyun-Jin
    Mehboob, Sheeraz
    Lee, Ju-Young
    Ha, Heung Yong
    CARBON, 2018, 128 : 31 - 37