Android Malware Detection Based on Convolutional Neural Networks

被引:4
|
作者
Wang, Zhiqiang [1 ,2 ,3 ]
Li, Gefei [1 ]
Chi, Yaping [1 ]
Zhang, Jianyi [1 ]
Yang, Tao [3 ]
Liu, Qixu [4 ]
机构
[1] Beijing Elect Sci & Technol Inst, Beijing, Peoples R China
[2] Minist Publ Secur, State Informat Ctr, Beijing, Peoples R China
[3] Minist Publ Secur, Key Lab Informat Network Secur, Beijing, Peoples R China
[4] Chinese Acad Sci, Inst Informat Engn, Key Lab Network Assessment Technol, Beijing, Peoples R China
关键词
Deep learning; Malware detection; Android Static Analysis;
D O I
10.1145/3331453.3361306
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
Due to the open source and fragmentation of the Android system, its security is increasingly challenged. Currently, Android malware detection has certain deficiencies in large-scale and automation detection. In this paper, we proposed an Android malware detection framework based on Convolutional Neural Network (CNN). We used static analysis tools and python scripts to automatically extract 1003 static features, and transformed the features of each sample into a two-dimensional matrix as input to the CNN model. We selected 5000 malicious samples and 5000 benign samples for verification. The experimental results show that the detection accuracy of CNN reaches 99.68%, which is much higher than other algorithms.
引用
收藏
页数:6
相关论文
共 50 条
  • [41] Malware Detection Using 1-Dimensional Convolutional Neural Networks
    Sharma, Arindam
    Malacaria, Pasquale
    Khouzani, M. H. R.
    2019 4TH IEEE EUROPEAN SYMPOSIUM ON SECURITY AND PRIVACY WORKSHOPS (EUROS&PW), 2019, : 247 - 256
  • [42] Opcode sequence analysis of Android malware by a convolutional neural network
    Li, Dan
    Zhao, Lichao
    Cheng, Qingfeng
    Lu, Ning
    Shi, Wenbo
    CONCURRENCY AND COMPUTATION-PRACTICE & EXPERIENCE, 2020, 32 (18):
  • [43] Android malware classification using convolutional neural network and LSTM
    Soodeh Hosseini
    Ali Emamali Nezhad
    Hossein Seilani
    Journal of Computer Virology and Hacking Techniques, 2021, 17 : 307 - 318
  • [44] Android malware classification using convolutional neural network and LSTM
    Hosseini, Soodeh
    Nezhad, Ali Emamali
    Seilani, Hossein
    JOURNAL OF COMPUTER VIROLOGY AND HACKING TECHNIQUES, 2021, 17 (04) : 307 - 318
  • [45] NADM: Neural Network for Android Detection Malware
    Nguyen Viet Duc
    Pham Thanh Giang
    PROCEEDINGS OF THE NINTH INTERNATIONAL SYMPOSIUM ON INFORMATION AND COMMUNICATION TECHNOLOGY (SOICT 2018), 2018, : 449 - 455
  • [46] HamDroid: permission-based harmful android anti-malware detection using neural networks
    Seraj, Saeed
    Khodambashi, Siavash
    Pavlidis, Michalis
    Polatidis, Nikolaos
    Neural Computing and Applications, 2022, 34 (18): : 15165 - 15174
  • [47] HamDroid: permission-based harmful android anti-malware detection using neural networks
    Seraj, Saeed
    Khodambashi, Siavash
    Pavlidis, Michalis
    Polatidis, Nikolaos
    NEURAL COMPUTING & APPLICATIONS, 2022, 34 (18): : 15165 - 15174
  • [48] HamDroid: permission-based harmful android anti-malware detection using neural networks
    Saeed Seraj
    Siavash Khodambashi
    Michalis Pavlidis
    Nikolaos Polatidis
    Neural Computing and Applications, 2022, 34 : 15165 - 15174
  • [49] Malware Classification with Deep Convolutional Neural Networks
    Kalash, Mahmoud
    Rochan, Mrigank
    Mohammed, Noman
    Bruce, Neil D. B.
    Wang, Yang
    Iqbal, Farkhund
    2018 9TH IFIP INTERNATIONAL CONFERENCE ON NEW TECHNOLOGIES, MOBILITY AND SECURITY (NTMS), 2018,
  • [50] GDroid: Android malware detection and classification with graph convolutional network
    Gao, Han
    Cheng, Shaoyin
    Zhang, Weiming
    COMPUTERS & SECURITY, 2021, 106