Error estimates for extrapolations with matrix-product states

被引:35
作者
Hubig, C. [1 ,2 ]
Haegeman, J. [3 ]
Schollwoeck, U. [1 ,2 ]
机构
[1] Ludwig Maximilians Univ Munchen, Dept Phys, Theresienstr 37, D-80333 Munich, Germany
[2] Ludwig Maximilians Univ Munchen, Arnold Sommerfeld Ctr Theoret Phys, Theresienstr 37, D-80333 Munich, Germany
[3] Univ Ghent, Dept Phys & Astron, Krijgslaan 281 S9, B-9000 Ghent, Belgium
基金
欧洲研究理事会;
关键词
RENORMALIZATION-GROUP;
D O I
10.1103/PhysRevB.97.045125
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
We introduce an error measure for matrix-product states without requiring the relatively costly two-site density-matrix renormalization group (2DMRG). This error measure is based on an approximation of the full variance <psi broken vertical bar(H) over cap - E)(2) broken vertical bar psi >. When applied to a series of matrix-product states at different bond dimensions obtained from a single-site density-matrix renormalization group (1DMRG) calculation, it allows for the extrapolation of observables towards the zero-error case representing the exact ground state of the system. The calculation of the error measure is split into a sequential part of cost equivalent to two calculations of <psi broken vertical bar(H) over cap broken vertical bar psi > and a trivially parallelized part scaling like a single operator application in 2DMRG. The reliability of this error measure is demonstrated by four examples: the L = 30, S = 1/2 Heisenberg chain, the L = 50 Hubbard chain, an electronic model with long-range Coulomb-like interactions, and the Hubbard model on a cylinder with a size of 10 x 4. Extrapolation in this error measure is shown to be on par with extrapolation in the 2DMRG truncation error or the full variance <psi broken vertical bar(H) over cap - E)(2) broken vertical bar psi > at a fraction of the computational effort.
引用
收藏
页数:9
相关论文
共 32 条
[1]   Density-matrix renormalization group for a gapless system of free fermions [J].
Andersson, M ;
Boman, M ;
Östlund, S .
PHYSICAL REVIEW B, 1999, 59 (16) :10493-10503
[2]   Fork Tensor-Product States: Efficient Multiorbital Real-Time DMFT Solver [J].
Bauernfeind, Daniel ;
Zingl, Manuel ;
Triebl, Robert ;
Aichhorn, Markus ;
Evertz, Hans Gerd .
PHYSICAL REVIEW X, 2017, 7 (03)
[3]   Matrix product operators, matrix product states, and ab initio density matrix renormalization group algorithms [J].
Chan, Garnet Kin-Lic ;
Keselman, Anna ;
Nakatani, Naoki ;
Li, Zhendong ;
White, Steven R. .
JOURNAL OF CHEMICAL PHYSICS, 2016, 145 (01)
[4]   Quantum Critical Spin-2 Chain with Emergent SU(3) Symmetry [J].
Chen, Pochung ;
Xue, Zhi-Long ;
McCulloch, I. P. ;
Chung, Ming-Chiang ;
Huang, Chao-Chun ;
Yip, S. -K. .
PHYSICAL REVIEW LETTERS, 2015, 114 (14)
[5]   Nature of the Spin-Liquid Ground State of the S=1/2 Heisenberg Model on the Kagome Lattice [J].
Depenbrock, Stefan ;
McCulloch, Ian P. ;
Schollwoeck, Ulrich .
PHYSICAL REVIEW LETTERS, 2012, 109 (06)
[6]  
Dorfner F., 2017, THESIS
[7]   Hybrid-space density matrix renormalization group study of the doped two-dimensional Hubbard model [J].
Ehlers, G. ;
White, S. R. ;
Noack, R. M. .
PHYSICAL REVIEW B, 2017, 95 (12)
[8]   Tensor operators: Constructions and applications for long-range interaction systems [J].
Froewis, F. ;
Nebendahl, V. ;
Duer, W. .
PHYSICAL REVIEW A, 2010, 81 (06)
[9]   Efficient DMFT impurity solver using real-time dynamics with matrix product states [J].
Ganahl, Martin ;
Aichhorn, Markus ;
Evertz, Hans Gerd ;
Thunstroem, Patrik ;
Held, Karsten ;
Verstraete, Frank .
PHYSICAL REVIEW B, 2015, 92 (15)
[10]   HUBBARD-MODEL IN INFINITE DIMENSIONS [J].
GEORGES, A ;
KOTLIAR, G .
PHYSICAL REVIEW B, 1992, 45 (12) :6479-6483