New classes of analytic and bi-univalent functions

被引:30
作者
Cotirla, Luminita-Ioana [1 ]
机构
[1] Tech Univ Cluj Napoca, Dept Math, Cluj Napoca, Romania
来源
AIMS MATHEMATICS | 2021年 / 6卷 / 10期
关键词
Fekete-Szego problem; (p; q)-derivative operator; univalent functions; bi-univalent functions; analytic functions; coefficient bounds and coefficient estimates; SUBCLASS;
D O I
10.3934/math.2021618
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Using the (p,q)-derivative operator we introduce new subclasses of analytic and bi-univalent functions, we obtain estimates on coefficients and the Fekete-Szego functional.
引用
收藏
页码:10642 / 10651
页数:10
相关论文
共 19 条
[1]   Faber polynomial coefficient bounds for a subclass of bi-univalent functions [J].
Altinkaya, Sahsene ;
Yalcin, Sibel .
COMPTES RENDUS MATHEMATIQUE, 2015, 353 (12) :1075-1080
[2]  
Bucur R, 2015, Appl. Math. Sci, V9, P1355
[3]  
Catas A., 2010, AN U ORADEA FASC MAT, VXVII, P51
[4]  
Corcino R.B., 2008, INTEGERS, V8, pA29
[5]  
Duren P.L., 1983, Univalent Functions
[6]   Maclaurin Coefficient Estimates of Bi-Univalent Functions Connected with the q-Derivative [J].
El-Deeb, Sheza M. ;
Bulboaca, Teodor ;
El-Matary, Bassant M. .
MATHEMATICS, 2020, 8 (03)
[7]  
Fekete M., 1933, J. Lond. Math. Soc, V1, P85, DOI DOI 10.1112/JLMS/S1-8.2.85
[8]   On a class of analytic functions related to conic domains involving q-calculus [J].
Govindaraj, M. ;
Sivasubramanian, S. .
ANALYSIS MATHEMATICA, 2017, 43 (03) :475-487
[9]  
Jahangiri JM, 2015, MAT VESTN, V67, P123
[10]   An unified approach to the Fekete-Szego problem [J].
Kanas, S. .
APPLIED MATHEMATICS AND COMPUTATION, 2012, 218 (17) :8453-8461