Stacked bidirectional LSTM RNN to evaluate the remaining useful life of supercapacitor

被引:103
作者
Liu, Chunli [1 ]
Zhang, Yang [2 ]
Sun, Jianrui [3 ]
Cui, Zhenhua [1 ]
Wang, Kai [1 ]
机构
[1] Qingdao Univ, Coll Elect Engn, Qingdao 266071, Peoples R China
[2] State Power Investment Corp, Strateg Res Inst, Beijing, Peoples R China
[3] Shandong Wide Area Technol Co Ltd, Dongying, Peoples R China
关键词
bidirectional; long short-term memory; recurrent neural network; remaining useful life; stacked; supercapacitor; REINFORCEMENT LEARNING-METHOD; LITHIUM-ION BATTERY; CHARGE ESTIMATION; STATE; OPTIMIZATION; SOC;
D O I
10.1002/er.7360
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
To predict the remaining useful life of supercapacitor, a data-based model is established by using a stacked bidirectional long short-term memory recurrent neural network. On the basis of the traditional long short-term memory recurrent neural network, a reverse recurrent layer with t time and subsequent time values in the input sequence is added. A stacked network can ensure enough capacity space. Simulation results show that the network has superior performance when the number of hidden layers is 2, the predicted RMSE and MAE are 0.0275 and 0.0241, respectively. Meanwhile, simulation compares ordinary and bidirectional recurrent neural networks and the bidirectional recurrent neural networks with different recurrent units. For subsequent ameliorate, this project will add swarm intelligence algorithm to optimize the initial weight of neural network and reduce the initial prediction error.
引用
收藏
页码:3034 / 3043
页数:10
相关论文
共 44 条
[1]   Advanced mathematical methods of SOC and SOH estimation for lithium-ion batteries [J].
Andre, Dave ;
Appel, Christian ;
Soczka-Guth, Thomas ;
Sauer, Dirk Uwe .
JOURNAL OF POWER SOURCES, 2013, 224 :20-27
[2]   Closed-loop optimization of fast-charging protocols for batteries with machine learning [J].
Attia, Peter M. ;
Grover, Aditya ;
Jin, Norman ;
Severson, Kristen A. ;
Markov, Todor M. ;
Liao, Yang-Hung ;
Chen, Michael H. ;
Cheong, Bryan ;
Perkins, Nicholas ;
Yang, Zi ;
Herring, Patrick K. ;
Aykol, Muratahan ;
Harris, Stephen J. ;
Braatz, Richard D. ;
Ermon, Stefano ;
Chueh, William C. .
NATURE, 2020, 578 (7795) :397-+
[3]   Stacked bidirectional long short-term memory networks for state-of-charge estimation of lithium-ion batteries [J].
Bian, Chong ;
He, Huoliang ;
Yang, Shunkun .
ENERGY, 2020, 191
[4]   Research Progress and Prospect of Triboelectric Nanogenerators as Self-Powered Human Body Sensors [J].
Bu, Chuanyu ;
Li, Fujiang ;
Yin, Kai ;
Pang, Jinbo ;
Wang, Licheng ;
Wang, Kai .
ACS APPLIED ELECTRONIC MATERIALS, 2020, 2 (04) :863-878
[5]   Robust structure regulation of geopolymer as novel efficient amine support to prepare high-efficiency CO2 capture solid sorbent [J].
Chen, Hao ;
Dong, Sheying ;
Zhang, Yaojun ;
He, Panyang .
CHEMICAL ENGINEERING JOURNAL, 2022, 427
[6]   A Cooperative Multi-Agent Reinforcement Learning Method Based on Coordination Degree [J].
Cui, Haoyan ;
Zhang, Zhen .
IEEE ACCESS, 2021, 9 :123805-123814
[7]   Data-driven state of charge estimation for lithium-ion battery packs based on Gaussian process regression [J].
Deng, Zhongwei ;
Hu, Xiaosong ;
Lin, Xianke ;
Che, Yunhong ;
Xu, Le ;
Guo, Wenchao .
ENERGY, 2020, 205
[8]   Waste Plastic Triboelectric Nanogenerators Using Recycled Plastic Bags for Power Generation [J].
Feng, Xiao ;
Li, Qiang ;
Wang, Kai .
ACS APPLIED MATERIALS & INTERFACES, 2021, 13 (01) :400-410
[9]   Integrated energy storage system based on triboelectric nanogenerator in electronic devices [J].
Feng, Xiao ;
Zhang, Yang ;
Kang, Le ;
Wang, Licheng ;
Duan, Chongxiong ;
Yin, Kai ;
Pang, Jinbo ;
Wang, Kai .
FRONTIERS OF CHEMICAL SCIENCE AND ENGINEERING, 2021, 15 (02) :238-250
[10]   State of Charge Estimation for Lithium-Ion Batteries Using Model-Based and Data-Driven Methods: A Review [J].
How, Dickson N. T. ;
Hannan, M. A. ;
Lipu, M. S. Hossain ;
Ker, Pin Jern .
IEEE ACCESS, 2019, 7 :136116-136136