Multilayer urban canopy modelling and mapping for traffic pollutant dispersion at high density urban areas

被引:38
|
作者
Yuan, Chao [1 ]
Shan, Ruiqin [1 ]
Zhang, Yangyang [1 ]
Li, Xian-Xiang [2 ]
Yin, Tiangang [3 ]
Hang, Jian [4 ]
Norford, Leslie [5 ]
机构
[1] Natl Univ Singapore, Dept Architecture, Sch Design & Environm, Singapore, Singapore
[2] Singapore MIT Alliance Res & Technol, CENSAM, Singapore, Singapore
[3] NASA, Goddard Space Flight Ctr, Greenbelt, MD USA
[4] Sun Yat Sen Univ, Sch Atmospher Sci, Guangzhou, Guangdong, Peoples R China
[5] MIT, Dept Architecture, Cambridge, MA 02139 USA
基金
新加坡国家研究基金会;
关键词
Multilayer urban canopy model; Traffic pollutant dispersion; Semi-empirical model; Building height variance; WIND-TUNNEL; AIR-POLLUTION; STREET CANYON; FLOW; ENVIRONMENT; CFD; VENTILATION; GUIDELINES; TURBULENCE; OUTDOOR;
D O I
10.1016/j.scitotenv.2018.07.409
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
A semi-empirical multilayer urban canopy model is developed to estimate the vertical dispersion of traffic emissions in high density urban areas. It is motivated by the heterogeneity of urban morphology in real urban cities and the need of quick urban design and planning. The urban canopy is divided into multiple layers, to include the impact of building height variance on pollutant dispersion. The model is derived by mass conservation within each layer through adopting a box model. To validate the model, results in several cases with uniform and non-uniform building height distributions are compared with CFD simulations. The validation study indicates that the assumption of zero pollutant concentration over themodeled canopy and no horizontal pollutant transfer has increasingly negligible influence with increasing urban densities. The new multilayer model performs well to model the vertical pollutant transport, and modelling results canmostly follow the trend of the CFD simulations. The present paper conducts two case studies in metropolitan areas in Singapore and Hong Kong to illustrate how to implement this multilayer urban canopy model in the planning practice. With an in-house GIS team using available data, the multilayer model provides planners a way to understand air pollutant dispersion in highdensity urban areas. (c) 2018 Elsevier B.V. All rights reserved.
引用
收藏
页码:255 / 267
页数:13
相关论文
共 50 条
  • [1] Multilayer Urban Canopy Modelling and Mapping for Traffic Pollutant Dispersion at High Density Urban Areas
    Yuan, Chao
    Shan, Ruiqin
    Zhang, Yangyang
    Li, Xian-Xiang
    Yin, Tiangang
    Norford, Leslie
    SMART AND HEALTHY WITHIN THE TWO-DEGREE LIMIT (PLEA 2018), VOL 3, 2018, : 1010 - 1011
  • [2] SIRANERISK: Modelling dispersion of steady and unsteady pollutant releases in the urban canopy
    Soulhac, L.
    Lamaison, G.
    Cierco, F. -X.
    Ben Salem, N.
    Salizzoni, P.
    Mejean, P.
    Armand, P.
    Patryl, L.
    ATMOSPHERIC ENVIRONMENT, 2016, 140 : 242 - 260
  • [3] Application of CFD Modelling for Pollutant Dispersion at an Urban Traffic Hotspot
    Ioannidis, Giannis
    Li, Chaofan
    Tremper, Paul
    Riedel, Till
    Ntziachristos, Leonidas
    ATMOSPHERE, 2024, 15 (01)
  • [4] Urban roughness modelling in relation to pollutant dispersion
    Equipe Dynamique l'Atmosphere H., Lab. de Mécanique des Fluides, École Centrale de Nantes, B.P. 92101, 44321 Nantes Cedex 3, France
    不详
    ATMOS. ENVIRON., 18 (3059-3075):
  • [5] Urban roughness modelling in relation to pollutant dispersion
    Bottema, M
    ATMOSPHERIC ENVIRONMENT, 1997, 31 (18) : 3059 - 3075
  • [6] Modelling Pollutant Dispersion in Urban Canyons to Enhance Air Quality and Urban Planning
    Sarria, Francisco Ruda
    Delgado, Mcarmen Guerrero
    Palma, Rafael Monge
    Amores, Teresa Palomo
    Ramos, Jose Sanchez
    Dominguez, Servando alvarez
    APPLIED SCIENCES-BASEL, 2025, 15 (04):
  • [7] Modelling atmospheric dry deposition in urban areas using an urban canopy approach
    Cherin, N.
    Roustan, Y.
    Musson-Genon, L.
    Seigneur, C.
    GEOSCIENTIFIC MODEL DEVELOPMENT, 2015, 8 (03) : 893 - 910
  • [8] Dispersion of a passive pollutant above urban areas in mountainous regions
    daSilva, LM
    Anquetin, S
    Chollet, JP
    AIR POLLUTION IV: MONITORING, SIMULATION AND CONTROL, 1996, : 667 - 675
  • [9] Analysis of transport methodologies for pollutant dispersion modelling in urban environments
    Tee, Clarence
    Ng, E. Y. K.
    Xu, George
    JOURNAL OF ENVIRONMENTAL CHEMICAL ENGINEERING, 2020, 8 (04):
  • [10] Air pollutant emissions and concentrations based on urban traffic modelling
    Nikolaou, K
    Basbas, S
    Toskas, G
    FRESENIUS ENVIRONMENTAL BULLETIN, 2002, 11 (08): : 494 - 498