The Price of Differential Privacy for Online Learning

被引:0
作者
Agarwal, Naman [1 ]
Singh, Karan [1 ]
机构
[1] Princeton Univ, Comp Sci, Princeton, NJ 08544 USA
来源
INTERNATIONAL CONFERENCE ON MACHINE LEARNING, VOL 70 | 2017年 / 70卷
关键词
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
We design differentially private algorithms for the problem of online linear optimization in the full information and bandit settings with optimal (O) over tilde(root T)(1) regret bounds. In the full-information setting, our results demonstrate that epsilon-differential privacy may be ensured for free - in particular, the regret bounds scale as O(root T) + (O) over tilde (1/epsilon). For bandit linear optimization, and as a special case, for non-stochastic multi-armed bandits, the pro- posed algorithm achieves a regret of (O) over tilde (1/epsilon root T) , while the previously known best regret bound was (O) over tilde (1/epsilon T-2/3).
引用
收藏
页数:9
相关论文
共 18 条
  • [1] Abernethy J. D., 2014, C LEARNING THEORY, P807
  • [2] Abernethy Jacob, 2008, P 21 ANN C LEARN THE
  • [3] Interior-Point Methods for Full-Information and Bandit Online Learning
    Abernethy, Jacob D.
    Hazan, Elad
    Rakhlin, Alexander
    [J]. IEEE TRANSACTIONS ON INFORMATION THEORY, 2012, 58 (07) : 4164 - 4175
  • [4] [Anonymous], 2012, COLT
  • [5] Auer P, 2003, SIAM J COMPUT, V32, P48, DOI 10.1137/S0097539701398375
  • [6] Regret Analysis of Stochastic and Nonstochastic Multi-armed Bandit Problems
    Bubeck, Sebastien
    Cesa-Bianchi, Nicolo
    [J]. FOUNDATIONS AND TRENDS IN MACHINE LEARNING, 2012, 5 (01): : 1 - 122
  • [7] Bubeck Sebastien., 2012, COLT, V23, p41.1
  • [8] Calibrating noise to sensitivity in private data analysis
    Dwork, Cynthia
    McSherry, Frank
    Nissim, Kobbi
    Smith, Adam
    [J]. THEORY OF CRYPTOGRAPHY, PROCEEDINGS, 2006, 3876 : 265 - 284
  • [9] Analyze Gauss: Optimal Bounds for Privacy-Preserving Principal Component Analysis
    Dwork, Cynthia
    Talwar, Kunal
    Thakurta, Abhradeep
    Zhang, Li
    [J]. STOC'14: PROCEEDINGS OF THE 46TH ANNUAL 2014 ACM SYMPOSIUM ON THEORY OF COMPUTING, 2014, : 11 - 20
  • [10] The Algorithmic Foundations of Differential Privacy
    Dwork, Cynthia
    Roth, Aaron
    [J]. FOUNDATIONS AND TRENDS IN THEORETICAL COMPUTER SCIENCE, 2013, 9 (3-4): : 211 - 406