The inverse mean curvature flow in warped cylinders of non-positive radial curvature

被引:20
作者
Scheuer, Julian [1 ]
机构
[1] Ruprecht Karls Univ Heidelberg, Inst Angew Math, Neuenheimer Feld 294, D-69120 Heidelberg, Germany
关键词
Curvature flow; Inverse mean curvature flow; Warped products; HYPERBOLIC SPACE; HYPERSURFACES;
D O I
10.1016/j.aim.2016.11.003
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We consider the inverse mean curvature flow in smooth Riemannian manifolds of the form ([R-0, infinity) x S-n, (g) over bar) with metric (g) over bar = dr(2) V-2(r)sigma and non-positive radial sectional curvature. We prove, that for initial mean-convex graphs over S-n the flow exists for all times and remains a graph over S-n. Under weak further assumptions on the ambient manifold, we prove optimal decay of the gradient and that the flow leaves become umbilic exponentially fast. We prove optimal C-2-estimates in case that the ambient pinching improves. (C) 2016 Elsevier Inc. All rights reserved.
引用
收藏
页码:1130 / 1163
页数:34
相关论文
共 17 条