Ordering graphs by their largest (least) Aα-eigenvalues

被引:1
作者
Guo, Shu-Guang [1 ]
Zhang, Rong [1 ]
机构
[1] Yancheng Teachers Univ, Sch Math & Stat, Yancheng 224002, Jiangsu, Peoples R China
基金
中国国家自然科学基金;
关键词
A(alpha)-spectral radius; upper bound; spectral ordering; least A(alpha)-eigenvalue; LAPLACIAN SPECTRAL RADII; MAXIMUM DEGREES; TREES; A(ALPHA)-SPECTRA; INDEX;
D O I
10.1080/03081087.2021.1981811
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let G be a simple undirected graph. For real number alpha is an element of [0,1], Nikiforov defined the A(alpha) -matrix of G as A(alpha)(G) = alpha D(G) + (1 - alpha)A(G), where A(G) and D(G) are the adjacency matrix and the degree diagonal matrix of G respectively. In this paper, we obtain a sharp upper bound on the largest eigenvalue rho(alpha)(G) of A(alpha)(G) for alpha is an element of [1 /2, 1). Employing this upper bound, we prove that 'For connected G(1) and G(2) with n vertices and m edges, if the maximum degree Delta(G(1)) >= 2 alpha(1 - alpha)(2m - n + 1 ) 2 alpha and Delta(G1) > Delta(G(2)), then rho(alpha) (G(1)) > rho(alpha)(G(2))'. Let lambda(alpha)(G) denote the least eigenvalue of A(alpha)(G). For alpha is an element of (1 /2, 1), we prove that 'For two connected G(1) and G(2), if the minimum degree delta(G(1)) <= 1/1-alpha - 2 and delta(G(1)) < delta(G(2)), then lambda(alpha)(G(1)) < X lambda(alpha)(G(2))'.
引用
收藏
页码:7049 / 7056
页数:8
相关论文
共 23 条
[11]   New method and new results on the order of spectral radius [J].
Liu, Muhuo ;
Liu, Bolian .
COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2012, 63 (03) :679-686
[12]   On the least eigenvalue of Aα-matrix of graphs [J].
Liu, Shuting ;
Das, Kinkar Chandra ;
Sun, Shaowei ;
Shu, Jinlong .
LINEAR ALGEBRA AND ITS APPLICATIONS, 2020, 586 :347-376
[13]   A note on (signless) Laplacian spectral ordering with maximum degrees of graphs [J].
Liu, Shuting ;
Lin, Huiqiu ;
Shu, Jinlong .
LINEAR ALGEBRA AND ITS APPLICATIONS, 2017, 521 :135-141
[14]  
Luo Ke, 2018, [Journal of Mathematical Research with Applications, 数学研究及应用], V38, P121
[15]   MERGING THE A- AND Q-SPECTRAL THEORIES [J].
Nikiforov, V. .
APPLICABLE ANALYSIS AND DISCRETE MATHEMATICS, 2017, 11 (01) :81-107
[16]   On the Aα-spectra of trees [J].
Nikiforov, Vladimir ;
Pasten, Germain ;
Rojo, Oscar ;
Soto, Ricardo L. .
LINEAR ALGEBRA AND ITS APPLICATIONS, 2017, 520 :286-305
[17]   Spectral radius ordering of starlike trees [J].
Oliveira, Elismar R. ;
Stevanovic, Dragan ;
Trevisan, Vilmar .
LINEAR & MULTILINEAR ALGEBRA, 2020, 68 (05) :991-1000
[18]  
Stanic Z., 2015, Inequalities for Graph Eigenvalues, VVolume 423
[19]   Bounds for the largest and the smallest Aα eigenvalues of a graph in terms of vertex degrees [J].
Wang, Sai ;
Wong, Dein ;
Tian, Fenglei .
LINEAR ALGEBRA AND ITS APPLICATIONS, 2020, 590 :210-223
[20]  
[王兴科 Wang Xingke], 2010, [数学学报, Acta Mathematica Sinica], V53, P469