Identification of Novel Single-Nucleotide Variants With Potential of Mediating Malfunction of MicroRNA in Congenital Heart Disease

被引:3
作者
Liu, Wangkai [1 ]
Cheng, Liangping [2 ]
Chen, Ken [3 ]
Wu, Jialing [2 ]
Peng, Rui [4 ]
Tang, Yan-Lai [1 ]
Chen, Jinghai [5 ]
Yang, Yuedong [3 ,6 ]
Li, Peiqiang [7 ]
Huang, Zhan-Peng [2 ,8 ,9 ]
机构
[1] Sun Yat Sen Univ, Affiliated Hosp 1, Dept Pediat, Guangzhou, Peoples R China
[2] Sun Yat Sen Univ, Affiliated Hosp 1, Inst Precis Med, Ctr Translat Med,Dept Cardiol, Guangzhou, Peoples R China
[3] Sun Yat Sen Univ, Sch Data & Comp Sci, Guangzhou, Peoples R China
[4] Fudan Univ, Inst Reprod & Dev, Obstet & Gynecol Hosp, Shanghai, Peoples R China
[5] Zhejiang Univ, Inst Translat Med, Affiliated Hosp 2, Prov Key Lab Cardiovasc Res,Dept Cardiol,Sch Med, Hangzhou, Peoples R China
[6] Sun Yat Sen Univ, Minist Educ, Key Lab Machine Intelligence & Adv Comp, Guangzhou, Peoples R China
[7] Lanzhou Univ, Sch Basic Med Sci, Inst Genet, Lanzhou, Peoples R China
[8] Sun Yat Sen Univ, NHC Key Lab Assisted Circulat, Guangzhou, Peoples R China
[9] Natl Guangdong Joint Engn Lab Diag & Treatment Va, Guangzhou, Peoples R China
基金
中国博士后科学基金; 中国国家自然科学基金;
关键词
neural crest cells; single nucleotide variant; congenital heart defect; microRNA; post-transcriptional regulation; CRANIAL NEURAL CREST; RISK; FATE; INDUCTION; INCREASES; TARGETS;
D O I
10.3389/fcvm.2021.739598
中图分类号
R5 [内科学];
学科分类号
1002 ; 100201 ;
摘要
Congenital heart defects (CHDs) represent the most common human birth defects. Our previous study indicates that the malfunction of microRNAs (miRNAs) in cardiac neural crest cells (NCCs), which contribute to the development of the heart and the connected great vessels, is likely linked to the pathogenesis of human CHDs. In this study, we attempt to further search for causative single-nucleotide variants (SNVs) from CHD patients that mediate the mis-regulating of miRNAs on their downstream target genes in the pathogenesis of CHDs. As a result, a total of 2,925 3 ' UTR SNVs were detected from a CHD cohort. In parallel, we profiled the expression of miRNAs in cardiac NCCs and found 201 expressed miRNAs. A combined analysis with these data further identified three 3 ' UTR SNVs, including NFATC1 c.*654C>T, FGFRL1 c.*414C>T, and CTNNB1 c.*729_*730insT, which result in the malfunction of miRNA-mediated gene regulation. The dysregulations were further validated experimentally. Therefore, our study indicates that miRNA-mediated gene dysregulation in cardiac NCCs could be an important etiology of congenital heart disease, which could lead to a new direction of diagnostic and therapeutic investigation on congenital heart disease.
引用
收藏
页数:12
相关论文
共 35 条
[1]   Early induction of neural crest cells: lessons learned from frog, fish and chick [J].
Aybar, MJ ;
Mayor, R .
CURRENT OPINION IN GENETICS & DEVELOPMENT, 2002, 12 (04) :452-458
[2]   MicroRNAs: Genomics, biogenesis, mechanism, and function (Reprinted from Cell, vol 116, pg 281-297, 2004) [J].
Bartel, David P. .
CELL, 2007, 131 (04) :11-29
[3]   Seeking causes: Classifying and evaluating congenital heart defects in etiologic studies [J].
Botto, Lorenzo D. ;
Lin, Angela E. ;
Riehle-Colarusso, Tiffany ;
Malik, Sadia ;
Correa, Adolfo .
BIRTH DEFECTS RESEARCH PART A-CLINICAL AND MOLECULAR TERATOLOGY, 2007, 79 (10) :714-727
[4]   The role of microRNA-1 and microRNA-133 in skeletal muscle proliferation and differentiation [J].
Chen, JF ;
Mandel, EM ;
Thomson, JM ;
Wu, QL ;
Callis, TE ;
Hammond, SM ;
Conlon, FL ;
Wang, DZ .
NATURE GENETICS, 2006, 38 (02) :228-233
[5]   miRDB: an online database for prediction of functional microRNA targets [J].
Chen, Yuhao ;
Wang, Xiaowei .
NUCLEIC ACIDS RESEARCH, 2020, 48 (D1) :D127-D131
[6]   Modification of gene activity in mouse embryos in utero by a tamoxifen-inducible form of Cre recombinase [J].
Danielian, PS ;
Muccino, D ;
Rowitch, DH ;
Michael, SK ;
McMahon, AP .
CURRENT BIOLOGY, 1998, 8 (24) :1323-1326
[7]   Control of neural crest cell fate by the Wnt signalling pathway [J].
Dorsky, RI ;
Moon, RT ;
Raible, DW .
NATURE, 1998, 396 (6709) :370-373
[8]   GENCODE reference annotation for the human and mouse genomes [J].
Frankish, Adam ;
Diekhans, Mark ;
Ferreira, Anne-Maud ;
Johnson, Rory ;
Jungreis, Irwin ;
Loveland, Jane ;
Mudge, Jonathan M. ;
Sisu, Cristina ;
Wright, James ;
Armstrong, Joel ;
Barnes, If ;
Berry, Andrew ;
Bignell, Alexandra ;
Sala, Silvia Carbonell ;
Chrast, Jacqueline ;
Cunningham, Fiona ;
Di Domenico, Tomas ;
Donaldson, Sarah ;
Fiddes, Ian T. ;
Giron, Carlos Garcia ;
Gonzalez, Jose Manuel ;
Grego, Tiago ;
Hardy, Matthew ;
Hourlier, Thibaut ;
Hunt, Toby ;
Izuogu, Osagie G. ;
Lagarde, Julien ;
Martin, Fergal J. ;
Martinez, Laura ;
Mohanan, Shamika ;
Muir, Paul ;
Navarro, Fabio C. P. ;
Parker, Anne ;
Pei, Baikang ;
Pozo, Fernando ;
Ruffier, Magali ;
Schmitt, Bianca M. ;
Stapleton, Eloise ;
Suner, Marie-Marthe ;
Sycheva, Irina ;
Uszczynska-Ratajczak, Barbara ;
Xu, Jinuri ;
Yates, Andrew ;
Zerbino, Daniel ;
Zhang, Yan ;
Aken, Bronwen ;
Choudhary, Jyoti S. ;
Gerstein, Mark ;
Guigo, Roderic ;
Hubbard, Tim J. P. .
NUCLEIC ACIDS RESEARCH, 2019, 47 (D1) :D766-D773
[9]   Most mammalian mRNAs are conserved targets of microRNAs [J].
Friedman, Robin C. ;
Farh, Kyle Kai-How ;
Burge, Christopher B. ;
Bartel, David P. .
GENOME RESEARCH, 2009, 19 (01) :92-105
[10]   A microRNA polycistron as a potential human oncogene [J].
He, L ;
Thomson, JM ;
Hemann, MT ;
Hernando-Monge, E ;
Mu, D ;
Goodson, S ;
Powers, S ;
Cordon-Cardo, C ;
Lowe, SW ;
Hannon, GJ ;
Hammond, SM .
NATURE, 2005, 435 (7043) :828-833