In Silico Phosphorylation of the Autoinhibited Form of p47phox Insights into the Mechanism of Activation

被引:17
作者
Autore, Flavia [4 ]
Pagano, Bruno [2 ,4 ]
Fornili, Arianna [4 ]
Rittinger, Katrin [1 ]
Fraternali, Franca [3 ,4 ]
机构
[1] MRC Natl Inst Med Res, Div Mol Struct, London, England
[2] Univ Salerno, Dipartimento Sci Farmaceut, Fisciano, Italy
[3] Kings Coll London, Sch Phys Sci & Engn, KCL Ctr Bioinformat, London WC2R 2LS, England
[4] Kings Coll London, Randall Div Cell & Mol Biophys, Sch Phys Sci & Engn, London WC2R 2LS, England
基金
英国医学研究理事会;
关键词
MOLECULAR-DYNAMICS SIMULATIONS; LEUKOCYTE NADPH OXIDASE; PROTEIN-KINASE-C; CONFORMATIONAL-CHANGES; CONFIGURATIONAL ENTROPY; OXIDATIVE STRESS; SH3; DOMAINS; INACTIVATION; RECOGNITION; ALGORITHM;
D O I
10.1016/j.bpj.2010.09.008
中图分类号
Q6 [生物物理学];
学科分类号
071011 ;
摘要
Activation of the multicomponent enzyme NADPH oxidase requires the interaction between the tandem SH3 domain of the cytosolic subunit p47(Phox) and the cytoplasmic tail of membrane bound p22(phox) In the resting state p47(Phox) exists in an autoinhibited conformation stabilized by intramolecular contacts between the SH3 domains and an adjacent polybastc region Phosphorylation of three serine residues Ser(303) Ser(304) and Ser(328) within this polybasic region has been shown to be sufficient for the disruption of the intramolecular interactions thereby inducing an active state of p47(phox) This active conformation is accessible to the cytoplasmic tail of p22(phox) and initiates the formation of the membrane bound functional enzyme complex Molecular dynamics simulations reveal insights in the mechanism of activation of the autoinhibited form of p47(phox) by in silico phosphorylation of the three serine residues Ser(303) Ser(304) and Ser(328) The simulations highlight the major collective coordinates generating the opening and the closing of the two SH3 domains and the residues that cause the unmasking of the p22(phox) binding site
引用
收藏
页码:3716 / 3725
页数:10
相关论文
共 48 条
  • [1] *ACC, INSIGHT 2 MOL MOD SO
  • [2] ESSENTIAL DYNAMICS OF PROTEINS
    AMADEI, A
    LINSSEN, ABM
    BERENDSEN, HJC
    [J]. PROTEINS-STRUCTURE FUNCTION AND GENETICS, 1993, 17 (04): : 412 - 425
  • [3] An efficient method for sampling the essential subspace of proteins
    Amadei, A
    Linssen, ABM
    deGroot, BL
    vanAalten, DMF
    Berendsen, HJC
    [J]. JOURNAL OF BIOMOLECULAR STRUCTURE & DYNAMICS, 1996, 13 (04) : 615 - 625
  • [4] Phagocytes and oxidative stress
    Babior, BM
    [J]. AMERICAN JOURNAL OF MEDICINE, 2000, 109 (01) : 33 - 44
  • [5] Potential drug targets: small GTPases that regulate leukocyte function
    Benard, V
    Bokoch, GM
    Diebold, BA
    [J]. TRENDS IN PHARMACOLOGICAL SCIENCES, 1999, 20 (09) : 365 - 370
  • [6] Berendsen HJ, 1981, Interaction models for water in relation to protein hydration, DOI DOI 10.1007/978-94-015-7658-1_21
  • [7] Collective protein dynamics in relation to function
    Berendsen, HJC
    Hayward, S
    [J]. CURRENT OPINION IN STRUCTURAL BIOLOGY, 2000, 10 (02) : 165 - 169
  • [8] MOLECULAR-DYNAMICS WITH COUPLING TO AN EXTERNAL BATH
    BERENDSEN, HJC
    POSTMA, JPM
    VANGUNSTEREN, WF
    DINOLA, A
    HAAK, JR
    [J]. JOURNAL OF CHEMICAL PHYSICS, 1984, 81 (08) : 3684 - 3690
  • [9] Nox proteins in signal transduction
    Brown, David I.
    Griendling, Kathy K.
    [J]. FREE RADICAL BIOLOGY AND MEDICINE, 2009, 47 (09) : 1239 - 1253
  • [10] POPS: a fast algorithm for solvent accessible surface areas at atomic and residue level
    Cavallo, L
    Kleinjung, J
    Fraternali, F
    [J]. NUCLEIC ACIDS RESEARCH, 2003, 31 (13) : 3364 - 3366