Gromov hyperbolicity and the Kobayashi metric on convex domains of finite type

被引:52
作者
Zimmer, Andrew M. [1 ]
机构
[1] Univ Michigan, Dept Math, Ann Arbor, MI 48109 USA
基金
美国国家科学基金会;
关键词
53C23; 32F18; 32F45;
D O I
10.1007/s00208-015-1278-9
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper we prove necessary and sufficient conditions for the Kobayashi metric on a convex domain to be Gromov hyperbolic. In particular we show that for convex domains with boundary being of finite type in the sense of D'Angelo is equivalent to the Gromov hyperbolicity of the Kobayashi metric. We also show that bounded domains which are locally convexifiable and have finite type in the sense of D'Angelo have Gromov hyperbolic Kobayashi metric. The proofs use ideas from the theory of the Hilbert metric.
引用
收藏
页码:1425 / 1498
页数:74
相关论文
共 37 条