Uniqueness of integer solution of linear equations

被引:3
作者
Mangasarian, O. L. [1 ,2 ]
Ferris, M. C. [1 ]
机构
[1] Univ Wisconsin, Dept Comp Sci, Madison, WI 53706 USA
[2] Univ Calif San Diego, Dept Math, La Jolla, CA 92093 USA
基金
美国国家科学基金会;
关键词
Integer solution uniqueness; Linear equations; Absolute value equations; Linear programming;
D O I
10.1007/s11590-010-0183-0
中图分类号
C93 [管理学]; O22 [运筹学];
学科分类号
070105 ; 12 ; 1201 ; 1202 ; 120202 ;
摘要
We consider the system of m linear equations in n integer variables Ax = d and give sufficient conditions for the uniqueness of its integer solution x is an element of {-1, 1}(n) by reformulating the problem as a linear program. Necessary and sufficient uniqueness characterizations of ordinary linear programming solutions are utilized to obtain sufficient uniqueness conditions such as the intersection of the kernel of A and the dual cone of a diagonal matrix of +/- 1's is the origin in R(n). This generalizes the well known condition that ker(A) = 0 for the uniqueness of a non-integer solution x of Ax = d. A zero maximum of a single linear program ensures the uniqueness of a given integer solution of a linear equation.
引用
收藏
页码:559 / 565
页数:7
相关论文
共 12 条
[1]  
[Anonymous], P 23 ANN S FDN COMP
[2]  
BALAS E, 1980, OPER RES, V28, P1132
[3]   ALGORITHMUS 47 - AN ALGORITHM FOR THE SOLUTION OF THE 0-1 KNAPSACK-PROBLEM [J].
FAYARD, D ;
PLATEAU, G .
COMPUTING, 1982, 28 (03) :269-287
[4]  
Horst R., 1995, Introduction to Global Optimization
[5]  
ILOG, 2003, ILOG CPLEX 9 0 US MA
[6]   Knapsack feasibility as an absolute value equation solvable by successive linear programming [J].
Mangasarian, O. L. .
OPTIMIZATION LETTERS, 2009, 3 (02) :161-170
[7]   UNIQUENESS OF SOLUTION IN LINEAR-PROGRAMMING [J].
MANGASARIAN, OL .
LINEAR ALGEBRA AND ITS APPLICATIONS, 1979, 25 (01) :151-162
[8]  
MANGASARIAN OL, 2009, 0902 U WISC COMP SCI
[9]  
*MATH WORKS INC, 1994, MATLAB US GUID
[10]  
Motzkin T. S., 1936, BEITRAGE THEORIE LIN, V22, P1