Decorrelation Estimates for Random Discrete Schrodinger Operators in Dimension One and Applications to Spectral Statistics

被引:3
作者
Shirley, Christopher [1 ]
机构
[1] Univ Paris 06, Inst Math Jussieu, F-75252 Paris 05, France
关键词
Random Schrodinger operators; Decorrelation estimates; Minami estimates; Spectral statistics; LOCALIZATION; MODEL;
D O I
10.1007/s10955-014-1168-7
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The purpose of the present work is to establish decorrelation estimates for some random discrete Schrodinger operator in dimension one. We prove that the Minami estimates are consequences of the Wegner estimates and localization. We also prove decorrelation estimates at distinct energies for the random hopping model and Schrodinger operators with alloy-type potentials. These results are used to give a description of the spectral statistics.
引用
收藏
页码:1298 / 1340
页数:43
相关论文
共 20 条
[1]  
Albeverio S., 2005, Solvable Models in Quantum Mechanics
[2]  
[Anonymous], OPER THEORY ADV APPL
[3]   GERSHGORINS THEOREM AND ZEROS OF POLYNOMIALS [J].
BELL, HE .
AMERICAN MATHEMATICAL MONTHLY, 1965, 72 (03) :292-&
[4]  
Bougerol, 1985, PROGR PROBAB STAT, V8, DOI [10.1007/978-1-4684-9172-2, DOI 10.1007/978-1-4684-9172-2]
[5]   Generalized Eigenvalue-Counting Estimates for the Anderson Model [J].
Combes, Jean-Michel ;
Germinet, Francois ;
Klein, Abel .
JOURNAL OF STATISTICAL PHYSICS, 2009, 135 (02) :201-216
[6]   Bootstrap multiscale analysis and localization in random media [J].
Germinet, F ;
Klein, A .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2001, 222 (02) :415-448
[7]  
Germinet F., 2010, ARXIV E PRINTS
[8]   The integrated density of states for some random operators with nonsign definite potentials [J].
Hislop, PD ;
Klopp, F .
JOURNAL OF FUNCTIONAL ANALYSIS, 2002, 195 (01) :12-47
[9]   Time-dependent scattering theory of N-body quantum systems [J].
Hunziker, W ;
Sigal, IM .
REVIEWS IN MATHEMATICAL PHYSICS, 2000, 12 (08) :1033-1084
[10]   ON THE SPECTRUM OF SCHRODINGER-OPERATORS WITH A RANDOM POTENTIAL [J].
KIRSCH, W ;
MARTINELLI, F .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1982, 85 (03) :329-350