Decay estimate and asymptotic behavior of small solutions to Schrodinger equations with subcritical dissipative nonlinearity

被引:0
作者
Kita, Naoyasu [1 ]
Nakamura, Yoshihisa [1 ]
机构
[1] Kumamoto Univ, Fac Adv Sci & Technol, Kumamoto 8608555, Japan
来源
ASYMPTOTIC ANALYSIS FOR NONLINEAR DISPERSIVE AND WAVE EQUATIONS | 2019年 / 81卷
关键词
nonlinear Schrodinger equation; decay estimate; asymptotic behavior; dissipative nonlinearity; sub-critical nonlinearity; LARGE TIME BEHAVIOR;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
This manuscript presents some results on the decay estimate and asymptotic behavior of small solutions to the Cauchy problem of 1D Schrodinger equations with a sub-critical dissipative nonlinearity. Our aim is to determine the explicit lower bound of the nonlinear power for which certain a priori estimate of the solution works well.
引用
收藏
页码:121 / 138
页数:18
相关论文
共 17 条
[1]  
Agrawal GP., 2006, NONLINEAR FIBER OPTI
[2]  
[Anonymous], 1997, DISCRETE CONT DYN-A
[3]  
Cazenave T., 2003, SEMILINEAR SCHRODING
[4]  
Ginibre J., 1997, GAKUTO INT SERIES MA, P85
[5]   Asymptotics for large time of solutions to the nonlinear Schrodinger and Hartree equations [J].
Hayashi, N ;
Naumkin, PI .
AMERICAN JOURNAL OF MATHEMATICS, 1998, 120 (02) :369-389
[6]  
Hayashi N, 1999, DISCRET CONTIN DYN S, V5, P93
[7]   Large time behavior of solutions for derivative cubic nonlinear Schrodinger equations [J].
Hayashi, N ;
Naumkin, PI ;
Uchida, H .
PUBLICATIONS OF THE RESEARCH INSTITUTE FOR MATHEMATICAL SCIENCES, 1999, 35 (03) :501-513
[8]   On the Schrodinger equation with dissipative nonlinearities of derivative type [J].
Hayashi, Nakao ;
Naumkin, Pavel I. ;
Sunagawa, Hideaki .
SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 2008, 40 (01) :278-291
[9]  
Hayashi N, 2007, INVERSE PROBL IMAG, V1, P391
[10]  
Jin G., 2016, PREPRINT