Lentil lectin derived from Lens culinaris exhibit broad antiviral activities against SARS-CoV-2 variants

被引:39
作者
Wang, Wenbo [1 ]
Li, Qianqian [2 ,3 ]
Wu, Jiajing [2 ,4 ]
Hu, Yu [5 ,6 ]
Wu, Gang [1 ]
Yu, Chuanfei [1 ]
Xu, Kangwei [7 ]
Liu, Xumei [1 ,8 ]
Wang, Qihui [5 ]
Huang, Weijin [2 ]
Wang, Lan [1 ]
Wang, Youchun [2 ]
机构
[1] Natl Inst Food & Drug Control NIFDC, Div Monoclonal Antibody Prod, Beijing 102629, Peoples R China
[2] Natl Inst Food & Drug Control NIFDC, Div HIV Aids & Sex Transmitted Virus Vaccines, 31 Huatuo St, Beijing 102629, Peoples R China
[3] Peking Union Med Coll, Grad Sch, Beijing, Peoples R China
[4] Wuhan Inst Biol Prod, Wuhan, Hubei, Peoples R China
[5] Chinese Acad Sci, Inst Microbiol, CAS Key Lab Pathogen Microbiol & Immunol, Beijing, Peoples R China
[6] Univ Sci & Technol China, Sch Life Sci, Hefei, Peoples R China
[7] Natl Inst Food & Drug Control NIFDC, Div Resp Virus Vaccines, Beijing, Peoples R China
[8] Yantai Univ, Sch Pharm, Yantai, Peoples R China
基金
中国国家自然科学基金;
关键词
SARS-CoV-2; antiviral lectin; carbohydrate-binding protein; N-linked glycosylation; pseudovirus; SPIKE; INFECTION; HIV-1; INHIBITORS; MUTATIONS; TARGETS; DOMAIN; LOOP;
D O I
10.1080/22221751.2021.1957720
中图分类号
R392 [医学免疫学]; Q939.91 [免疫学];
学科分类号
100102 ;
摘要
The spike (S) protein of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) mutated continuously and newly emerging variants escape from antibody-mediated neutralization raised great concern. S protein is heavily glycosylated and the glycosylation sites are relatively conserved, thus glycans on S protein surface could be a target for the development of anti-SARS-CoV-2 strategies against variants. Here, we collected 12 plant-derived lectins with different carbohydrate specificity and evaluated their anti-SARS-CoV-2 activity against mutant strains and epidemic variants using a pseudovirus-based neutralization assay. The Lens culinaris-derived lentil lectin which specifically bind to oligomannose-type glycans and GlcNAc at the non-reducing end terminus showed most potent and broad antiviral activity against a panel of mutant strains and variants, including the artificial mutants at N-/O-linked glycosylation site, natural existed amino acid mutants, as well as the epidemic variants B.1.1.7, B.1.351, and P.1. Lentil lectin also showed antiviral activity against SARS-CoV and MERS-CoV. We found lentil lectin could block the binding of ACE2 to S trimer and inhibit SARS-CoV-2 at the early steps of infection. Using structural information and determined N-glycan profile of S trimer, taking together with the carbohydrate specificity of lentil lectin, we provide a basis for the observed broad spectrum anti-SARS-CoV-2 activity. Lentil lectin showed weak haemagglutination activity at 1 mg/mL and no cytotoxicity activity, and no weight loss was found in single injection mouse experiment. This report provides the first evidence that lentil lectin strongly inhibit infection of SARS-COV-2 variants, which should provide valuable insights for developing future anti-SARS-CoV-2 strategies.
引用
收藏
页码:1519 / 1529
页数:11
相关论文
共 47 条
[1]   A perspective on potential antibody-dependent enhancement of SARS-CoV-2 [J].
Arvin, Ann M. ;
Fink, Katja ;
Schmid, Michael A. ;
Cathcart, Andrea ;
Spreafico, Roberto ;
Havenar-Daughton, Colin ;
Lanzavecchia, Antonio ;
Corti, Davide ;
Virgin, Herbert W. .
NATURE, 2020, 584 (7821) :353-363
[2]   Lectin-mediated drug targeting: history and applications [J].
Bies, C ;
Lehr, CM ;
Woodley, JF .
ADVANCED DRUG DELIVERY REVIEWS, 2004, 56 (04) :425-435
[3]   Why Glycosylation Matters in Building a Better Flu Vaccine* [J].
Chang, Deborah ;
Zaia, Joseph .
MOLECULAR & CELLULAR PROTEOMICS, 2019, 18 (12) :2348-2358
[4]   A molecularly engineered antiviral banana lectin inhibits fusion and is efficacious against influenza virus infection in vivo [J].
Coves-Datson, Evelyn M. ;
King, Steven R. ;
Legendre, Maureen ;
Gupta, Auroni ;
Chan, Susana M. ;
Gitlin, Emily ;
Kulkarni, Vikram V. ;
Garcia, Jezreel Pantaleon ;
Smee, Donald F. ;
Lipka, Elke ;
Evans, Scott E. ;
Tarbet, E. Bart ;
Ono, Akira ;
Markovitz, David M. .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2020, 117 (04) :2122-2132
[5]   The Spike D614G mutation increases SARS-CoV-2 infection of multiple human cell types [J].
Daniloski, Zharko ;
Jordan, Tristan X. ;
Ilmain, Juliana K. ;
Guo, Xinyi ;
Bhabha, Gira ;
TenOever, Benjamin R. ;
Sanjana, Neville E. .
ELIFE, 2021, 10 :1-16
[6]   Molecular Basis of SARS-CoV-2 Infection and Rational Design of Potential Antiviral Agents: Modeling and Simulation Approaches [J].
Frances-Monerris, Antonio ;
Hognon, Cecilia ;
Miclot, Tom ;
Garcia-Iriepa, Cristina ;
Iriepa, Isabel ;
Terenzi, Alessio ;
Grandemange, Stephanie ;
Barone, Giampaolo ;
Marazzi, Marco ;
Monari, Antonio .
JOURNAL OF PROTEOME RESEARCH, 2020, 19 (11) :4291-4315
[7]   Can SARS-CoV-2 Virus Use Multiple Receptors to Enter Host Cells? [J].
Gadanec, Laura Kate ;
McSweeney, Kristen Renee ;
Qaradakhi, Tawar ;
Ali, Benazir ;
Zulli, Anthony ;
Apostolopoulos, Vasso .
INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES, 2021, 22 (03) :1-35
[8]   Evolution of A(H1N1) pdm09 influenza virus masking by glycosylation [J].
Ge, Pan ;
Ross, Ted M. .
EXPERT REVIEW OF VACCINES, 2021, 20 (05) :519-526
[9]   Complete Mapping of Mutations to the SARS-CoV-2 Spike Receptor-Binding Domain that Escape Antibody Recognition [J].
Greaney, Allison J. ;
Starr, Tyler N. ;
Gilchuk, Pavlo ;
Zost, Seth J. ;
Binshtein, Elad ;
Loes, Andrea N. ;
Hilton, Sarah K. ;
Huddleston, John ;
Eguia, Rachel ;
Crawford, Katharine H. D. ;
Dingens, Adam S. ;
Nargi, Rachel S. ;
Sutton, Rachel E. ;
Suryadevara, Naveenchandra ;
Rothlauf, Paul W. ;
Liu, Zhuoming ;
Whelan, Sean P. J. ;
Carnahan, Robert H. ;
Crowe, James E., Jr. ;
Bloom, Jesse D. .
CELL HOST & MICROBE, 2021, 29 (01) :44-+
[10]   CONCANAVALIN A DERIVATIVES WITH ALTERED BIOLOGICAL-ACTIVITIES [J].
GUNTHER, GR ;
WANG, JL ;
YAHARA, I ;
CUNNINGHAM, BA ;
EDELMAN, GM .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1973, 70 (04) :1012-1016