Intercalated Water and Organic Molecules for Electrode Materials of Rechargeable Batteries

被引:85
|
作者
Lee, Hyeon Jeong [1 ]
Shin, Jaeho [2 ,3 ]
Choi, Jang Wook [2 ,3 ]
机构
[1] Korea Adv Inst Sci & Technol, Grad Sch Energy Environm Water & Sustainabil EEWS, 291 Daehak Ro, Daejeon 34141, South Korea
[2] Seoul Natl Univ, Sch Chem & Biol Engn, 1 Gwanak Ro, Seoul 08826, South Korea
[3] Seoul Natl Univ, Inst Chem Proc, 1 Gwanak Ro, Seoul 08826, South Korea
基金
新加坡国家研究基金会;
关键词
hydrated compounds; magnesium-ion batteries; organic-molecule intercalants; sodium-ion batteries; supercapacitors; SODIUM-ION BATTERIES; ELECTROCHEMICAL ENERGY-STORAGE; LITHIUM METAL ANODE; HIGH-CAPACITY ANODE; CATHODE MATERIALS; CRYSTAL WATER; MAGNESIUM BATTERIES; CONVERSION MECHANISM; NATURAL GRAPHITE; HIGH-PERFORMANCE;
D O I
10.1002/adma.201705851
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
The intrinsic limitations of lithium-ion batteries (LIBs) with regard to safety, cost, and the availability of raw materials have promoted research on so-called "post-LIBs". The recent intense research of post-LIBs provides an invaluable lesson that existing electrode materials used in LIBs may not perform as well in post-LIBs, calling for new material designs compliant with emerging batteries based on new chemistries. One promising approach in this direction is the development of materials with intercalated water or organic molecules, as these materials demonstrate superior electrochemical performance in emerging battery systems. The enlarged ionic channel dimensions and effective shielding of the electrostatic interaction between carrier ions and the lattice host are the origins of the observed electrochemical performance. Moreover, these intercalants serve as interlayer pillars to sustain the framework for prolonged cycles. Representative examples of such intercalated materials applied to batteries based on Li+, Na+, Mg2+, and Zn2+ ions and supercapacitors are considered, along with their impact in materials research.
引用
收藏
页数:14
相关论文
共 50 条
  • [21] Redox-active organic compounds as potential electrode materials for rechargeable batteries
    Lee, Hyun Ho
    Shin, Dong-Seon
    Hong, Sung You
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2016, 252
  • [22] Covalent organic frameworks as electrode materials for rechargeable metal-ion batteries
    Wu, Manman
    Zhou, Zhen
    INTERDISCIPLINARY MATERIALS, 2023, 2 (02): : 231 - 259
  • [23] Organic cathode materials for rechargeable batteries
    Cao, Ruiguo
    Qian, Jiangfeng
    Zhang, Ji-Guang
    Xu, Wu
    Green Energy and Technology, 2015, 172 : 637 - 671
  • [24] Copper-Intercalated TiS2: Electrode Materials for Rechargeable Batteries as Future Power Resources
    Reshak, Ali H.
    JOURNAL OF PHYSICAL CHEMISTRY A, 2009, 113 (08): : 1635 - 1645
  • [25] New electrode materials for lithium rechargeable batteries
    García-Alvarado, F.
    Arroyo Y De Dompablo, M.E.
    Morán, E.
    Gutiérrez, M.T.
    Kuhn, A.
    Várez, A.
    Journal of Power Sources, 1999, 81 : 85 - 89
  • [26] Insertion electrode materials for rechargeable lithium batteries
    Winter, M
    Besenhard, JO
    Spahr, ME
    Novak, P
    ADVANCED MATERIALS, 1998, 10 (10) : 725 - 763
  • [27] Halogen Storage Electrode Materials for Rechargeable Batteries
    Xue, Zhiyang
    Gao, Zhengyuan
    Zhao, Xiangyu
    ENERGY & ENVIRONMENTAL MATERIALS, 2022, 5 (04) : 1155 - 1179
  • [28] Halogen Storage Electrode Materials for Rechargeable Batteries
    Zhiyang Xue
    Zhengyuan Gao
    Xiangyu Zhao
    Energy & Environmental Materials, 2022, 5 (04) : 1155 - 1179
  • [29] Defect Engineering on Electrode Materials for Rechargeable Batteries
    Zhang, Yiqiong
    Tao, Li
    Xie, Chao
    Wang, Dongdong
    Zou, Yuqin
    Chen, Ru
    Wang, Yanyong
    Jia, Chuankun
    Wang, Shuangyin
    ADVANCED MATERIALS, 2020, 32 (07)
  • [30] Electrode materials for aqueous rechargeable lithium batteries
    H. Manjunatha
    G. S. Suresh
    T. V. Venkatesha
    Journal of Solid State Electrochemistry, 2011, 15 : 431 - 445