On the Temperley-Lieb Model

被引:0
作者
Lima-Santos, A. [1 ]
机构
[1] Univ Fed Sao Carlos, Dept Fis, Caixa Postal 676, BR-13569905 Sao Carlos, SP, Brazil
基金
巴西圣保罗研究基金会;
关键词
Boundary Bethe ansatz; Reflection matrix; Temperley-Lieb chain; OPEN-BOUNDARY-CONDITIONS; ALGEBRAIC BETHE-ANSATZ; T-J MODEL; R-MATRICES; XXZ CHAIN; REFLECTION MATRICES; SPIN CHAINS; SEGMENT; REPRESENTATIONS; SYSTEMS;
D O I
10.1007/s10955-016-1648-z
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
This work concerns the boundary integrability of the Temperley-Lieb model. We constructed the solutions of the graded reflection equations in order to determine the boundary terms of the correspondig spin-1 Hamiltonian. We obtain the eigenvalue expressions as well as its associated Bethe ansatz equations by means of the coordinate Bethe ansatz. These equations provide the complete description of the spectrum of the model with diagonal integrable boundaries.
引用
收藏
页码:953 / 969
页数:17
相关论文
共 41 条
  • [1] [Anonymous], 2007, Dover books on physics
  • [2] General boundary conditions for the sl(N) and sl(M|N) open spin chains -: art. no. P08005
    Arnaudon, D
    Avan, J
    Crampé, N
    Doikou, A
    Frappat, L
    Ragoucy, E
    [J]. JOURNAL OF STATISTICAL MECHANICS-THEORY AND EXPERIMENT, 2004,
  • [3] Classification of reflection matrices related to (super-)Yangians and application to open spin chain models
    Arnaudon, D
    Avan, J
    Crampé, N
    Doikou, A
    Frappat, L
    Ragoucy, E
    [J]. NUCLEAR PHYSICS B, 2003, 668 (03) : 469 - 505
  • [4] Quantum spin chains of Temperley-Lieb type: periodic boundary conditions, spectral multiplicities and finite temperature
    Aufgebauer, Britta
    Kluemper, Andreas
    [J]. JOURNAL OF STATISTICAL MECHANICS-THEORY AND EXPERIMENT, 2010,
  • [5] Modified algebraic Bethe ansatz for XXZ chain on the segment - III - Proof
    Avan, J.
    Belliard, S.
    Grosjean, N.
    Pimenta, R. A.
    [J]. NUCLEAR PHYSICS B, 2015, 899 : 229 - 246
  • [6] Reflection k-matrices related to Temperley-Lieb R-matrices
    Avan, J.
    Kulish, P. P.
    Rollet, G.
    [J]. THEORETICAL AND MATHEMATICAL PHYSICS, 2011, 169 (02) : 1530 - 1538
  • [7] TEMPERLEY-LIEB LATTICE MODELS ARISING FROM QUANTUM GROUPS
    BATCHELOR, MT
    KUNIBA, A
    [J]. JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1991, 24 (11): : 2599 - 2614
  • [9] TRIGONOMETRIC SOLUTIONS OF TRIANGLE EQUATIONS AND CLASSICAL LIE-ALGEBRAS
    BAZHANOV, VV
    [J]. PHYSICS LETTERS B, 1985, 159 (4-6) : 321 - 324
  • [10] BAZHANOV VV, 1987, THEOR MATH PHYS+, V73, P1303, DOI 10.1007/BF01041913