Multiple extensions of a finite Euler's pentagonal number theorem and the Lucas formulas

被引:6
作者
Guo, Victor J. W. [1 ]
Zeng, Jiang [2 ]
机构
[1] E China Normal Univ, Dept Math, Shanghai 200062, Peoples R China
[2] Univ Lyon 1, Univ Lyon, CNR, UMR 5208,Inst Camille Jordan, F-69622 Villeurbanne, France
关键词
q-binomial coefficient; q-Chu-Vandermonde formula; Euler's pentagonal number theorem; Lucas' formulas;
D O I
10.1016/j.disc.2007.07.106
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Motivated by the resemblance of a multivariate series identity and a finite analogue of Enter's pentagonal number theorem, we study multiple extensions of the latter formula. In a different direction we derive a common extension of this multivariate series identity and two formulas of Lucas. Finally we give a combinatorial proof of Lucas' formulas. (c) 2007 Elsevier B.V. All rights reserved.
引用
收藏
页码:4069 / 4078
页数:10
相关论文
共 17 条
[1]  
Andrews G. E., 1976, ENCY MATH ITS APPL, V2
[2]   Umbral calculus, Bailey chains, and pentagonal number theorems [J].
Andrews, GE .
JOURNAL OF COMBINATORIAL THEORY SERIES A, 2000, 91 (1-2) :464-475
[3]  
[Anonymous], 1983, COMBINATORIAL ENUMER
[4]   Some observations on Dyson's new symmetries of partitions [J].
Berkovich, A ;
Garvan, FG .
JOURNAL OF COMBINATORIAL THEORY SERIES A, 2002, 100 (01) :61-93
[5]  
Cigler J, 2003, ELECTRON J COMB, V10
[6]  
Ekhad S.B., 1996, ELECTRON J COMB, V3
[7]  
GASPER G, 2004, BASIC HYPERGEOMETRIC, V35
[8]   Cylindric partitions [J].
Gessel, IM ;
Krattenthaler, C .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1997, 349 (02) :429-479
[9]  
GOULD HW, 1977, FIBONACCI QUART, V15, P25
[10]  
Graham R.L., 1989, Concrete Mathematics