A new high precision energy-preserving integrator for system of oscillatory second-order differential equations

被引:54
作者
Wang, Bin [1 ]
Wu, Xinyuan [1 ]
机构
[1] Nanjing Univ, Dept Math, State Key Lab Novel Software Technol, Nanjing 210093, Jiangsu, Peoples R China
关键词
Hamiltonian systems; Energy-preserving integrators; Oscillatory differential equations; Fermi-Pasta-Ulam problem; NUMERICAL-METHODS; CONSERVATION; SCHEMES;
D O I
10.1016/j.physleta.2012.02.040
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
This Letter proposes a new high precision energy-preserving integrator for system of oscillatory second-order differential equations q ''(t) + Mq(t) = f(q(t)) with a symmetric and positive semi-definite matrix M and f(q) = -del U(q). The system is equivalent to a separable Hamiltonian system with Hamiltonian H(p, q) = 1/2 p(T) p + 1/2 q(T) Mq + U(q). The properties of the new energy-preserving integrator are analyzed. The well-known Fermi-Pasta-Ulam problem is performed numerically to show that the new integrator preserves the energy integral with higher accuracy than Average Vector Field (AVF) method and an energy-preserving collocation method. (C) 2012 Elsevier B.V. All rights reserved.
引用
收藏
页码:1185 / 1190
页数:6
相关论文
共 37 条
[11]   Energy conservation with non-symplectic methods: Examples and counter-examples [J].
Faou, E ;
Hairer, E ;
Pham, TL .
BIT NUMERICAL MATHEMATICS, 2004, 44 (04) :699-709
[12]  
Feng K, 2010, SYMPLECTIC GEOMETRIC ALGORITHMS FOR HAMILTONIAN SYSTEMS, P1, DOI 10.1007/978-3-642-01777-3
[13]   New methods for oscillatory systems based on ARKN methods [J].
Franco, J. M. .
APPLIED NUMERICAL MATHEMATICS, 2006, 56 (08) :1040-1053
[14]   Long-time-step methods for oscillatory differential equations [J].
Garcia-Archilla, B ;
Sanz-Serna, JM ;
Skeel, RD .
SIAM JOURNAL ON SCIENTIFIC COMPUTING, 1998, 20 (03) :930-963
[15]   Long-time energy conservation of numerical methods for oscillatory differential equations [J].
Hairer, E ;
Lubich, C .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 2000, 38 (02) :414-441
[16]  
Hairer E., 2006, GEOMETRIC NUMERICAL
[17]  
Hairer E., 2010, JNAIAM, J. Numer. Anal. Ind. Appl. Math., V5, P73
[18]  
Hochbruck M, 1999, NUMER MATH, V83, P403, DOI 10.1007/s002119900067
[19]  
Hochbruck M, 2010, ACTA NUMER, V19, P209, DOI 10.1017/S0962492910000048
[20]  
Iavernaro F., 2009, J NUMER ANAL IND APP, V4, P87