A new high precision energy-preserving integrator for system of oscillatory second-order differential equations

被引:54
作者
Wang, Bin [1 ]
Wu, Xinyuan [1 ]
机构
[1] Nanjing Univ, Dept Math, State Key Lab Novel Software Technol, Nanjing 210093, Jiangsu, Peoples R China
关键词
Hamiltonian systems; Energy-preserving integrators; Oscillatory differential equations; Fermi-Pasta-Ulam problem; NUMERICAL-METHODS; CONSERVATION; SCHEMES;
D O I
10.1016/j.physleta.2012.02.040
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
This Letter proposes a new high precision energy-preserving integrator for system of oscillatory second-order differential equations q ''(t) + Mq(t) = f(q(t)) with a symmetric and positive semi-definite matrix M and f(q) = -del U(q). The system is equivalent to a separable Hamiltonian system with Hamiltonian H(p, q) = 1/2 p(T) p + 1/2 q(T) Mq + U(q). The properties of the new energy-preserving integrator are analyzed. The well-known Fermi-Pasta-Ulam problem is performed numerically to show that the new integrator preserves the energy integral with higher accuracy than Average Vector Field (AVF) method and an energy-preserving collocation method. (C) 2012 Elsevier B.V. All rights reserved.
引用
收藏
页码:1185 / 1190
页数:6
相关论文
共 37 条
[1]  
[Anonymous], 1955, Los Alamos Report
[2]  
Brugnano L., 2010, JNAIAM J NUMER ANAL, V5, P17
[3]  
Celledoni E., 2010, JNAIAM J NUMER ANAL, V5, P85
[4]   Energy-Preserving Integrators and the Structure of B-series [J].
Celledoni, Elena ;
McLachlan, Robert I. ;
Owren, Brynjulf ;
Quispel, G. R. W. .
FOUNDATIONS OF COMPUTATIONAL MATHEMATICS, 2010, 10 (06) :673-693
[5]   ENERGY-PRESERVING RUNGE-KUTTA METHODS [J].
Celledoni, Elena ;
McLachlan, Robert I. ;
McLaren, David I. ;
Owren, Brynjulf ;
Quispel, G. Reinout W. ;
Wright, William M. .
ESAIM-MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS-MODELISATION MATHEMATIQUE ET ANALYSE NUMERIQUE, 2009, 43 (04) :645-649
[6]   Energy-preserving numerical schemes of high accuracy for one-dimensional Hamiltonian systems [J].
Cieslinski, Jan L. ;
Ratkiewicz, Boguslaw .
JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2011, 44 (15)
[7]   On the exact discretization of the classical harmonic oscillator equation [J].
Cieslinski, Jan L. .
JOURNAL OF DIFFERENCE EQUATIONS AND APPLICATIONS, 2011, 17 (11) :1673-1694
[8]   Improving the accuracy of the discrete gradient method in the one-dimensional case [J].
Cieslinski, Jan L. ;
Ratkiewicz, Boguslaw .
PHYSICAL REVIEW E, 2010, 81 (01)
[9]   Linear energy-preserving integrators for Poisson systems [J].
Cohen, David ;
Hairer, Ernst .
BIT NUMERICAL MATHEMATICS, 2011, 51 (01) :91-101
[10]   Preserving multiple first integrals by discrete gradients [J].
Dahlby, Morten ;
Owren, Brynjulf ;
Yaguchi, Takaharu .
JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2011, 44 (30)