proFIA: a data preprocessing workflow for flow injection analysis coupled to high-resolution mass spectrometry

被引:15
作者
Delabriere, Alexis [1 ]
Hohenester, Ulli M. [2 ]
Colsch, Benoit [2 ]
Junot, Christophe [2 ]
Fenaille, Francoise [2 ]
Thevenot, Etienne A. [1 ]
机构
[1] CEA, LIST, Lab Data Anal & Syst Intelligence, MetaboHUB, F-91191 Gif Sur Yvette, France
[2] CEA, DRF JOLIOT SPI, Lab Etud Metab Medicaments, MetaboHUB, F-91191 Gif Sur Yvette, France
关键词
ADULT URINARY METABOLOME; HIGH-THROUGHPUT; ELECTROSPRAY-IONIZATION; LC-MS; CHROMATOGRAPHY; IDENTIFICATION; MATRIX; CLASSIFICATION; IMPUTATION; BIOLOGY;
D O I
10.1093/bioinformatics/btx458
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
Motivation: Flow Injection Analysis coupled to High-Resolution Mass Spectrometry (FIA-HRMS) is a promising approach for high-throughput metabolomics. FIA-HRMS data, however, cannot be preprocessed with current software tools which rely on liquid chromatography separation, or handle low resolution data only. Results: We thus developed the proFIA package, which implements a suite of innovative algorithms to preprocess FIA-HRMS raw files, and generates the table of peak intensities. The workflow consists of 3 steps: (i) noise estimation, peak detection and quantification, (ii) peak grouping across samples and (iii) missing value imputation. In addition, we have implemented a new indicator to quantify the potential alteration of the feature peak shape due to matrix effect. The preprocessing is fast (less than 15 s per file), and the value of the main parameters (ppm and dmz) can be easily inferred from the mass resolution of the instrument. Application to two metabolomics datasets (including spiked serum samples) showed high precision (96%) and recall (98%) compared with manual integration. These results demonstrate that proFIA achieves very efficient and robust detection and quantification of FIA-HRMS data, and opens new opportunities for high-throughput phenotyping.
引用
收藏
页码:3767 / 3775
页数:9
相关论文
共 45 条
[1]   High-throughput classification of yeast mutants for functional genomics using metabolic footprinting [J].
Allen, J ;
Davey, HM ;
Broadhurst, D ;
Heald, JK ;
Rowland, JJ ;
Oliver, SG ;
Kell, DB .
NATURE BIOTECHNOLOGY, 2003, 21 (06) :692-696
[2]   Comparative LC-MS: A landscape of peaks and valleys [J].
America, Antoine H. P. ;
Cordewener, Jan H. G. .
PROTEOMICS, 2008, 8 (04) :731-749
[3]   Liquid Chromatography Coupled to Mass Spectrometry-Based Metabolomics and the Concept of Biomarker [J].
Boudah, Samia ;
Paris, Alain ;
Junot, Christophe .
METABOLOMICS COMING OF AGE WITH ITS TECHNOLOGICAL DIVERSITY, 2013, 67 :159-218
[4]   Algorithms and tools for the preprocessing of LC-MS metabolomics data [J].
Castillo, Sandra ;
Gopalacharyulu, Peddinti ;
Yetukuri, Laxman ;
Oresic, Matej .
CHEMOMETRICS AND INTELLIGENT LABORATORY SYSTEMS, 2011, 108 (01) :23-32
[5]   A cross-platform toolkit for mass spectrometry and proteomics [J].
Chambers, Matthew C. ;
Maclean, Brendan ;
Burke, Robert ;
Amodei, Dario ;
Ruderman, Daniel L. ;
Neumann, Steffen ;
Gatto, Laurent ;
Fischer, Bernd ;
Pratt, Brian ;
Egertson, Jarrett ;
Hoff, Katherine ;
Kessner, Darren ;
Tasman, Natalie ;
Shulman, Nicholas ;
Frewen, Barbara ;
Baker, Tahmina A. ;
Brusniak, Mi-Youn ;
Paulse, Christopher ;
Creasy, David ;
Flashner, Lisa ;
Kani, Kian ;
Moulding, Chris ;
Seymour, Sean L. ;
Nuwaysir, Lydia M. ;
Lefebvre, Brent ;
Kuhlmann, Frank ;
Roark, Joe ;
Rainer, Paape ;
Detlev, Suckau ;
Hemenway, Tina ;
Huhmer, Andreas ;
Langridge, James ;
Connolly, Brian ;
Chadick, Trey ;
Holly, Krisztina ;
Eckels, Josh ;
Deutsch, Eric W. ;
Moritz, Robert L. ;
Katz, Jonathan E. ;
Agus, David B. ;
MacCoss, Michael ;
Tabb, David L. ;
Mallick, Parag .
NATURE BIOTECHNOLOGY, 2012, 30 (10) :918-920
[6]   Mass spectrometry-based metabolomics [J].
Dettmer, Katja ;
Aronov, Pavel A. ;
Hammock, Bruce D. .
MASS SPECTROMETRY REVIEWS, 2007, 26 (01) :51-78
[7]   Non-targeted UHPLC-MS metabolomic data processing methods: a comparative investigation of normalisation, missing value imputation, transformation and scaling [J].
Di Guida, Riccardo ;
Engel, Jasper ;
Allwood, J. William ;
Weber, Ralf J. M. ;
Jones, Martin R. ;
Sommer, Ulf ;
Viant, Mark R. ;
Dunn, Warwick B. .
METABOLOMICS, 2016, 12 (05)
[8]   Flow infusion electrospray ionisation mass spectrometry for high throughput, non-targeted metabolite fingerprinting: a review [J].
Draper, John ;
Lloyd, Amanda J. ;
Goodacre, Royston ;
Beckmann, Manfred .
METABOLOMICS, 2013, 9 (01) :S4-S29
[9]  
Elzhov T. V., 2016, minpack.lm: R interface to the Levenberg-Marquardtnonlinear least-squares algorithm found in MINPACK, Plus Support for Bounds
[10]   A predictive model for matrix and analyte effects in electrospray ionization of singly-charged ionic analytes [J].
Enke, CG .
ANALYTICAL CHEMISTRY, 1997, 69 (23) :4885-4893