BERNSTEIN-VON MISES THEOREMS FOR GAUSSIAN REGRESSION WITH INCREASING NUMBER OF REGRESSORS

被引:41
作者
Bontemps, Dominique [1 ]
机构
[1] Univ Paris 11, Lab Math Orsay, UMR8628, F-91405 Orsay, France
关键词
Nonparametric Bayesian statistics; semiparametric Bayesian statistics; Bernstein-von Mises theorem; posterior asymptotic normality; adaptive estimation; POSTERIOR DISTRIBUTIONS; ASYMPTOTIC NORMALITY; EXPONENTIAL-FAMILIES; CONVERGENCE-RATES;
D O I
10.1214/11-AOS912
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
This paper brings a contribution to the Bayesian theory of nonparametric and semiparametric estimation. We are interested in the asymptotic normality of the posterior distribution in Gaussian linear regression models when the number of regressors increases with the sample size. Two kinds of Bernstein-von Mises theorems are obtained in this framework: nonparametric theorems for the parameter itself, and semiparametric theorems for functionals of the parameter. We apply them to the Gaussian sequence model and to the regression of functions in Sobolev and C-alpha classes, in which we get the minimax convergence rates. Adaptivity is reached for the Bayesian estimators of functionals in our applications.
引用
收藏
页码:2557 / 2584
页数:28
相关论文
共 19 条
[1]  
BONTEMPS D., 2011, BERNSTEIN VONMISES S, DOI [10.1214/11-A0S912SUPP, DOI 10.1214/11-AOS912SUPP]
[2]   A Bernstein-Von Mises Theorem for discrete probability distributions [J].
Boucheron, S. ;
Gassiat, E. .
ELECTRONIC JOURNAL OF STATISTICS, 2009, 3 :114-148
[3]   A semiparametric Bernstein-von Mises theorem for Gaussian process priors [J].
Castillo, Ismael .
PROBABILITY THEORY AND RELATED FIELDS, 2012, 152 (1-2) :53-99
[4]   Reference priors for exponential families with increasing dimension [J].
Clarke, Bertrand ;
Ghosal, Subhashis .
ELECTRONIC JOURNAL OF STATISTICS, 2010, 4 :737-780
[5]   INFORMATION-THEORETIC ASYMPTOTICS OF BAYES METHODS [J].
CLARKE, BS ;
BARRON, AR .
IEEE TRANSACTIONS ON INFORMATION THEORY, 1990, 36 (03) :453-471
[6]  
De Boor C., 1978, A practical guide to splines
[7]  
Freedman D, 1999, ANN STAT, V27, P1119
[8]   Convergence rates of posterior distributions [J].
Ghosal, S ;
Ghosh, JK ;
Van der Vaart, AW .
ANNALS OF STATISTICS, 2000, 28 (02) :500-531
[9]   Asymptotic normality of posterior distributions for exponential families when the number of parameters tends to infinity [J].
Ghosal, S .
JOURNAL OF MULTIVARIATE ANALYSIS, 2000, 74 (01) :49-68
[10]   Asymptotic normality of posterior distributions in high-dimensional linear models [J].
Ghosal, S .
BERNOULLI, 1999, 5 (02) :315-331