Experimental pub crawl from Rayleigh-Benard to magnetostrophic convection

被引:24
作者
Grannan, Alexander M. [1 ,2 ]
Cheng, Jonathan S. [1 ,3 ]
Aggarwal, Ashna [1 ]
Hawkins, Emily K. [1 ,4 ]
Xu, Yufan [1 ]
Horn, Susanne [5 ]
Sanchez-Alvarez, Jose [6 ]
Aurnou, Jonathan M. [1 ]
机构
[1] Univ Calif Los Angeles, Earth Planetary & Space Sci, Los Angeles, CA 90095 USA
[2] Argonne Natl Lab, Nucl Engn & Sci, Lemont, IL 60439 USA
[3] Univ Rochester, Mech Engn, Rochester, NY 14627 USA
[4] Loyola Marymount Univ, Phys Dept, Playa Vista, CA 90094 USA
[5] Coventry Univ, Ctr Fluid & Complex Syst, Coventry CV1 5FB, W Midlands, England
[6] Univ Politecn Madrid, ETSI Aeronaut, Madrid 28040, Spain
基金
美国国家科学基金会; 英国工程与自然科学研究理事会;
关键词
Benard convection; rotating flows; magneto convection; HEAT-TRANSFER; MAGNETIC-FIELD; LIQUID-METAL; SPIN-UP; ONSET; DYNAMICS; DRIVEN; NUMBER; FLOW;
D O I
10.1017/jfm.2022.204
中图分类号
O3 [力学];
学科分类号
08 ; 0801 ;
摘要
The interplay between convective, rotational and magnetic forces defines the dynamics within the electrically conducting regions of planets and stars. Yet their triadic effects are separated from one another in most studies, arguably due to the richness of each subset. In a single laboratory experiment, we apply a fixed heat flux, two different magnetic field strengths and one rotation rate, allowing us to chart a continuous path through Rayleigh-Benard convection (RBC), two regimes of magnetoconvection, rotating convection and two regimes of rotating magnetoconvection, before finishing back at RBC. Dynamically rapid transitions are determined to exist between jump rope vortex states, thermoelectrically driven magnetoprecessional modes, mixed wall- and oscillatory-mode rotating convection and a novel magnetostrophic wall mode. Thus, our laboratory 'pub crawl' provides a coherent intercomparison of the broadly varying responses arising as a function of the magnetorotational forces imposed on a liquid-metal convection system.
引用
收藏
页数:13
相关论文
共 41 条
[1]   Heat transfer and large scale dynamics in turbulent Rayleigh-Benard convection [J].
Ahlers, Guenter ;
Grossmann, Siegfried ;
Lohse, Detlef .
REVIEWS OF MODERN PHYSICS, 2009, 81 (02) :503-537
[2]   Jump rope vortex flow in liquid metal Rayleigh-Benard convection in a cuboid container of aspect ratio Γ=5 [J].
Akashi, Megumi ;
Yanagisawa, Takatoshi ;
Sakuraba, Ataru ;
Schindler, Felix ;
Horn, Susanne ;
Vogt, Tobias ;
Eckert, Sven .
JOURNAL OF FLUID MECHANICS, 2021, 932
[3]   Turbulent Rayleigh-Benard convection in a strong vertical magnetic field [J].
Akhmedagaev, R. ;
Zikanov, O. ;
Krasnov, D. ;
Schumacher, J. .
JOURNAL OF FLUID MECHANICS, 2020, 895
[4]   Rotating thermal convection in liquid gallium: multi-modal flow, absent steady columns [J].
Aurnou, Jonathan M. ;
Bertin, Vincent ;
Grannan, Alexander M. ;
Horn, Susanne ;
Vogt, Tobias .
JOURNAL OF FLUID MECHANICS, 2018, 846 :846-876
[5]   Asymptotic theory of wall-attached convection in a horizontal fluid layer with a vertical magnetic field [J].
Busse, F. H. .
PHYSICS OF FLUIDS, 2008, 20 (02)
[6]   Quasi-geostrophic dynamo theory [J].
Calkins, Michael A. .
PHYSICS OF THE EARTH AND PLANETARY INTERIORS, 2018, 276 :182-189
[7]   A multiscale dynamo model driven by quasi-geostrophic convection [J].
Calkins, Michael A. ;
Julien, Keith ;
Tobias, Steven M. ;
Aurnou, Jonathan M. .
JOURNAL OF FLUID MECHANICS, 2015, 780 :143-166
[8]  
Chandrasekhar S., 1961, HYDRODYNAMIC HYDROMA
[9]   Laboratory-numerical models of rapidly rotating convection in planetary cores [J].
Cheng, J. S. ;
Stellmach, S. ;
Ribeiro, A. ;
Grannan, A. ;
King, E. M. ;
Aurnou, J. M. .
GEOPHYSICAL JOURNAL INTERNATIONAL, 2015, 201 (01) :1-17
[10]   Spin-up of homogeneous and stratified fluids [J].
Duck, PW ;
Foster, MR .
ANNUAL REVIEW OF FLUID MECHANICS, 2001, 33 (33) :231-263