DESA: a novel hybrid decomposing-ensemble and spatiotemporal attention model for PM2.5 forecasting

被引:20
作者
Fang, Shuwei [1 ]
Li, Qi [1 ]
Karimian, Hamed [2 ]
Liu, Hui [1 ]
Mo, Yuqin [1 ]
机构
[1] Peking Univ, Inst Remote Sensing & Geog Informat Syst, Beijing 100871, Peoples R China
[2] Jiangxi Univ Sci & Technol, Sch Civil & Surveying & Mapping Engn, Ganzhou 341000, Peoples R China
基金
中国博士后科学基金;
关键词
Air Pollution; PM2.5; Forecast; Deep Learning; Machine Learning; Spatiotemporal data modeling; FINE PARTICULATE MATTER; NEURAL-NETWORKS; PM2.5; PREDICTION; CHINA; CHEMISTRY; LEVEL;
D O I
10.1007/s11356-022-19574-4
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Exposure to fine particulate matter can easily lead to health issues. PM2.5 concentrations are associated with various spatiotemporal factors, which makes the prediction of PM2.5 concentrations still a challenging task. One of the reasons that makes the accurate prediction by statistical learning method difficult is severe fluctuations in input data. In addition, the abstraction method of space will also affect the prediction results. To address these important issues, a novel hybrid decomposing-ensemble and spatiotemporal attention (DESA) model is proposed to improve the prediction accuracy by decomposing the mode-mixed time series into single-mode series and automatically assign weights to the spatiotemporal factors. In our proposed framework, raw PM2.5 series are firstly decomposed into simple sub-series via the complete ensemble empirical mode decomposition (CEEMD) method. Then, to keep the results independent of the spatial abstraction method, a datadriven approach called multiscale spatiotemporal attention network is employed to extract spatiotemporal features from the sub-series. Finally, the predictions of each sub-series are processed separately and combined to obtain the final prediction results. The experimental results indicate that the proposed model achieved the better performance with RMSE of 11.15, 17.49, 24.84, and 26.93 for 6-, 12-, 24-, and 36-h forecasting, respectively. The proposed method is expected to be applied in fine prediction of air pollution and controlling programs and therefore provide decision support or useful guidance.
引用
收藏
页码:54150 / 54166
页数:17
相关论文
共 33 条
[1]   Global modeling of tropospheric chemistry with assimilated meteorology: Model description and evaluation [J].
Bey, I ;
Jacob, DJ ;
Yantosca, RM ;
Logan, JA ;
Field, BD ;
Fiore, AM ;
Li, QB ;
Liu, HGY ;
Mickley, LJ ;
Schultz, MG .
JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES, 2001, 106 (D19) :23073-23095
[2]  
Byun D.W., 1999, Science Algorithms of the EPA Models-3 Community Multiscale Air Quality (CMAQ) Modeling System
[3]   Selection of key features for PM2.5 prediction using a wavelet model and RBF-LSTM [J].
Chen, Yi-Chung ;
Li, Dong-Chi .
APPLIED INTELLIGENCE, 2021, 51 (04) :2534-2555
[4]   Development of Land Use Regression Models for PM2.5, PM2.5 Absorbance, PM10 and PMcoarse in 20 European Study Areas; Results of the ESCAPE Project [J].
Eeftens, Marloes ;
Beelen, Rob ;
de Hoogh, Kees ;
Bellander, Tom ;
Cesaroni, Giulia ;
Cirach, Marta ;
Declercq, Christophe ;
Dedele, Audrius ;
Dons, Evi ;
de Nazelle, Audrey ;
Dimakopoulou, Konstantina ;
Eriksen, Kirsten ;
Falq, Gregoire ;
Fischer, Paul ;
Galassi, Claudia ;
Grazuleviciene, Regina ;
Heinrich, Joachim ;
Hoffmann, Barbara ;
Jerrett, Michael ;
Keidel, Dirk ;
Korek, Michal ;
Lanki, Timo ;
Lindley, Sarah ;
Madsen, Christian ;
Moelter, Anna ;
Nador, Gizella ;
Nieuwenhuijsen, Mark ;
Nonnemacher, Michael ;
Pedeli, Xanthi ;
Raaschou-Nielsen, Ole ;
Patelarou, Evridiki ;
Quass, Ulrich ;
Ranzi, Andrea ;
Schindler, Christian ;
Stempfelet, Morgane ;
Stephanou, Euripides ;
Sugiri, Dorothea ;
Tsai, Ming-Yi ;
Yli-Tuomi, Tarja ;
Varro, Mihaly J. ;
Vienneau, Danielle ;
von Klot, Stephanie ;
Wolf, Kathrin ;
Brunekreef, Bert ;
Hoek, Gerard .
ENVIRONMENTAL SCIENCE & TECHNOLOGY, 2012, 46 (20) :11195-11205
[5]  
[范竣翔 Fan Junxiang], 2017, [测绘科学, Science of Surveying and Mapping], V42, P76
[6]   Artificial neural networks forecasting of PM2.5 pollution using air mass trajectory based geographic model and wavelet transformation [J].
Feng, Xiao ;
Li, Qi ;
Zhu, Yajie ;
Hou, Junxiong ;
Jin, Lingyan ;
Wang, Jingjie .
ATMOSPHERIC ENVIRONMENT, 2015, 107 :118-128
[7]   Source apportionment and health risk assessment of organic constituents in fine ambient aerosols (PM2.5): A complete year study over National Capital Region of India [J].
Gadi, Ranu ;
Shivani ;
Sharma, Sudhir Kumar ;
Mandal, Tuhin Kumar .
CHEMOSPHERE, 2019, 221 :583-596
[8]   Fully coupled "online" chemistry within the WRF model [J].
Grell, GA ;
Peckham, SE ;
Schmitz, R ;
McKeen, SA ;
Frost, G ;
Skamarock, WC ;
Eder, B .
ATMOSPHERIC ENVIRONMENT, 2005, 39 (37) :6957-6975
[9]   A Deep CNN-LSTM Model for Particulate Matter (PM2.5) Forecasting in Smart Cities [J].
Huang, Chiou-Jye ;
Kuo, Ping-Huan .
SENSORS, 2018, 18 (07)
[10]   The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis [J].
Huang, NE ;
Shen, Z ;
Long, SR ;
Wu, MLC ;
Shih, HH ;
Zheng, QN ;
Yen, NC ;
Tung, CC ;
Liu, HH .
PROCEEDINGS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 1998, 454 (1971) :903-995