Lipschitz spaces and Calderon-Zygmund operators associated to non-doubling measures

被引:29
作者
García-Cuerva, J
Gatto, AE
机构
[1] Univ Autonoma, Dept Matemat, Madrid 28049, Spain
[2] DePaul Univ, Dept Math, Chicago, IL 60614 USA
关键词
Calderon-Zygmund theory; singular integrals; Lipschitz spaces; BMO; non-doubling measures;
D O I
10.5565/PUBLMAT_49205_02
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In the setting of a metric measure space (X, d, mu) with an n-dimensional Radon measure p, we give a necessary and sufficient condition for the boundedness of Calderon-Zygmund operators associated to the measure mu on Lipschitz spaces on the support of p. Also, for the Euclidean space R-d with an arbitrary Radon measure mu, we give several characterizations of Lipschitz spaces on the support of g, Lip(a, A), in terms of mean oscillations involving mu. This allows us to view the "regular" BMO space of X. Tolsa as a limit case for alpha -> 0 of the spaces Lip(a, mu).
引用
收藏
页码:285 / 296
页数:12
相关论文
共 18 条
[1]  
[Anonymous], 1990, CURRENT MATH TOPICS
[2]  
Banach S, 1951, MONOGRAFIE MATEMATYC, VXVII
[3]   CONVOLUTION OPERATORS ON BANACH SPACE VALUED FUNCTIONS [J].
BENEDEK, A ;
PANZONE, R ;
CALDERON, AP .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1962, 48 (03) :356-&
[4]  
DAVID G, 1991, LECT NOTES MATH, V1465, P1
[5]   Boundedness properties of fractional integral operators associated to non-doubling measures [J].
García-Cuerva, J ;
Gatto, AE .
STUDIA MATHEMATICA, 2004, 162 (03) :245-261
[6]   LIPSCHITZ FUNCTIONS ON SPACES OF HOMOGENEOUS TYPE [J].
MACIAS, RA ;
SEGOVIA, C .
ADVANCES IN MATHEMATICS, 1979, 33 (03) :257-270
[7]   SINGULAR INTEGRALS ON GENERALIZED LIPSCHITZ AND HARDY SPACES [J].
MACIAS, RA ;
SEGOVIA, C .
STUDIA MATHEMATICA, 1979, 65 (01) :55-75
[8]  
Mateu J, 2000, DUKE MATH J, V102, P533
[9]  
Mattila P, 2002, PUBL MAT, P199
[10]  
MATTILA P, 1995, CAMBRIDGE STUDIES MA, V44