On the Reconstruction of Conductivity of a Bordered Two-dimensional Surface in R3 from Electrical Current Measurements on Its Boundary

被引:11
作者
Henkin, G. M. [1 ]
Novikov, R. G. [2 ]
机构
[1] Univ Paris 06, F-75252 Paris, France
[2] Ecole Polytech, Ctr Math Appl, CNRS, UMR 7641, F-91128 Palaiseau, France
关键词
Riemann surface; Electrical current; Inverse conductivity problem; partial derivative-method; INVERSE SCATTERING PROBLEM; SCHRODINGER OPERATOR; FIXED ENERGY; UNIQUENESS; PLANE;
D O I
10.1007/s12220-010-9158-8
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
An electrical potential U on a bordered real surface X in R-3 with isotropic conductivity function sigma > 0 satisfies the equation d(sigma d(c)U)|(X) = 0, where d(c) = i(partial derivative - partial derivative), d = partial derivative + partial derivative are real operators associated with a complex ( conformal) structure on X induced by the Euclidean metric of R3. This paper gives an exact reconstruction of the conductivity function s on X from the Dirichlet-to-Neumann mapping U|(bX) -> sigma d(c)U|(bX). This paper extends to the case of Riemann surfaces the reconstruction schemes of R. Novikov (Funkt. Anal. Prilozh. 22(4):11-22, 1988) and of A. Bukhgeim ( J. Inv. Ill-posed Probl. 16: 19-34, 2008), given for the case X subset of R-2. The paper extends and corrects the statements of Henkin and Michel (J. Geom. Anal. 18: 1033-1052, 2008), where the inverse boundary value problem on the Riemann surfaces was first considered.
引用
收藏
页码:543 / 587
页数:45
相关论文
共 34 条
[21]   On the explicit reconstruction of a Riemann surface from its Dirichlet-Neumann operator [J].
Henkin, Gennadi ;
Michel, Vincent .
GEOMETRIC AND FUNCTIONAL ANALYSIS, 2007, 17 (01) :116-155
[22]  
HENKIN GM, 2008, ARXIV08043761
[23]  
HENKIN GM, 2010, ARXIV08043761
[24]  
KOHN R, 1985, COMMUN PUR APPL MATH, V38, P644
[25]   Global uniqueness for a two-dimensional inverse boundary value problem [J].
Nachman, AI .
ANNALS OF MATHEMATICS, 1996, 143 (01) :71-96
[26]   RECONSTRUCTION OF A TWO-DIMENSIONAL SCHRODINGER OPERATOR FROM THE SCATTERING-AMPLITUDE FOR FIXED ENERGY [J].
NOVIKOV, RG .
FUNCTIONAL ANALYSIS AND ITS APPLICATIONS, 1986, 20 (03) :246-248
[27]   THE INVERSE SCATTERING PROBLEM ON A FIXED ENERGY-LEVEL FOR THE 2-DIMENSIONAL SCHRODINGER OPERATOR [J].
NOVIKOV, RG .
JOURNAL OF FUNCTIONAL ANALYSIS, 1992, 103 (02) :409-463
[28]  
NOVIKOV RG, 1988, FUNCT ANAL APPL+, V22, P263
[29]  
NOVIKOV SP, 1983, CURRENT PROBLEMS MAT, V23, P3
[30]  
RODIN Y, 1987, LECT NOTES MATH, V1288