On the Reconstruction of Conductivity of a Bordered Two-dimensional Surface in R3 from Electrical Current Measurements on Its Boundary

被引:11
作者
Henkin, G. M. [1 ]
Novikov, R. G. [2 ]
机构
[1] Univ Paris 06, F-75252 Paris, France
[2] Ecole Polytech, Ctr Math Appl, CNRS, UMR 7641, F-91128 Palaiseau, France
关键词
Riemann surface; Electrical current; Inverse conductivity problem; partial derivative-method; INVERSE SCATTERING PROBLEM; SCHRODINGER OPERATOR; FIXED ENERGY; UNIQUENESS; PLANE;
D O I
10.1007/s12220-010-9158-8
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
An electrical potential U on a bordered real surface X in R-3 with isotropic conductivity function sigma > 0 satisfies the equation d(sigma d(c)U)|(X) = 0, where d(c) = i(partial derivative - partial derivative), d = partial derivative + partial derivative are real operators associated with a complex ( conformal) structure on X induced by the Euclidean metric of R3. This paper gives an exact reconstruction of the conductivity function s on X from the Dirichlet-to-Neumann mapping U|(bX) -> sigma d(c)U|(bX). This paper extends to the case of Riemann surfaces the reconstruction schemes of R. Novikov (Funkt. Anal. Prilozh. 22(4):11-22, 1988) and of A. Bukhgeim ( J. Inv. Ill-posed Probl. 16: 19-34, 2008), given for the case X subset of R-2. The paper extends and corrects the statements of Henkin and Michel (J. Geom. Anal. 18: 1033-1052, 2008), where the inverse boundary value problem on the Riemann surfaces was first considered.
引用
收藏
页码:543 / 587
页数:45
相关论文
共 34 条
[1]  
[Anonymous], 1952, THEORY APPL HARMONIC
[2]  
[Anonymous], 1990, The analysis of linear partial differential operators
[3]  
[Anonymous], J SOVIET MATH
[4]  
[Anonymous], MATH USSR IZVESTIYA
[5]  
BEALS R, 1990, PROC NONLIN, P15
[6]  
BEALS R, 1985, P SYMP PURE MATH, V43, P45
[7]  
BERENSTEIN CA, 1973, ANN I FOURIER, V23, P55
[8]   ON A SPECTRAL TRANSFORM OF A KDV-LIKE EQUATION RELATED TO THE SCHRODINGER OPERATOR IN THE PLANE [J].
BOITI, M ;
LEON, JJP ;
MANNA, M ;
PEMPINELLI, F .
INVERSE PROBLEMS, 1987, 3 (01) :25-36
[9]   Recovering a potential from Cauchy data in the two-dimensional case [J].
Bukhgeim, A. L. .
JOURNAL OF INVERSE AND ILL-POSED PROBLEMS, 2008, 16 (01) :19-33
[10]  
Druskin V. L., 1982, PHYS SOLID EARTH, V18, P51