Dispersive estimates for the inviscid rotating stratified Boussinesq equations in the stratification-dominant three-scale limit

被引:3
作者
Mu, Pengcheng [1 ]
Schochet, Steve [2 ]
机构
[1] Inst Appl Phys & Computat Math, Beijing 100088, Peoples R China
[2] Tel Aviv Univ, Sch Math Sci, IL-69978 Tel Aviv, Israel
来源
JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES | 2022年 / 158卷
关键词
Boussinesq equations; Froude number; Rossby number; Dispersive estimates; Long time existence; Three-scale singular limit;
D O I
10.1016/j.matpur.2021.10.005
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
A dispersive decay estimate is proven for the linear propagator of the threescale rotating stratified Boussinesq equations in the stratification-dominant regime. Because the phase function of that propagator is both singular and degenerate, obtaining the estimate requires novel techniques involving cutting phase-space shells into several pieces and using different methods in each region. Using the decay estimate, we prove the long-time existence of solutions to the initial-value problem for the nonlinear equations and obtain a rate of convergence to the limit system and intermediate asymptotics.
引用
收藏
页码:90 / 119
页数:30
相关论文
共 22 条
[1]  
[Anonymous], 1991, Progress in Mathematics
[2]  
[Anonymous], 2003, Courant Lecture Notes in Mathematics
[3]  
Babin A., 1995, ADV SER NONLINEAR DY, V7, P145
[4]  
Charve F, 2005, ASYMPTOTIC ANAL, V42, P173
[5]   Global well-posedness and asymptotics for a geophysical fluid system [J].
Charve, F .
COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS, 2004, 29 (11-12) :1919-1940
[6]  
Charve F., 2008, Ann. Fac. Sci. Toulouse Math, V17, P221, DOI [10.5802/afst.1182, DOI 10.5802/AFST.1182]
[7]  
Chemin J., 2006, OXFORD LECT SERIES M, V32
[8]   Fluids with anisotropic viscosity [J].
Chemin, JY ;
Desjardins, B ;
Gallagher, I ;
Grenier, E .
ESAIM-MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS-MODELISATION MATHEMATIQUE ET ANALYSE NUMERIQUE, 2000, 34 (02) :315-335
[9]   Convergence rate estimates for the low Mach and Alfven number three-scale singular limit of compressible ideal magnetohydrodynamics [J].
Cheng, Bin ;
Ju, Qiangchang ;
Schochet, Steve .
ESAIM-MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS, 2021, 55 :S733-S759
[10]   Three-Scale Singular Limits of Evolutionary PDEs [J].
Cheng, Bin ;
Ju, Qiangchang ;
Schochet, Steve .
ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 2018, 229 (02) :601-625