The distribution of prime ideals of imaginary quadratic fields

被引:6
作者
Harman, G [1 ]
Kumchev, A
Lewis, PA
机构
[1] Royal Holloway Univ London, Dept Math, Egham TW20 0EX, Surrey, England
[2] Univ Toronto, Dept Math, Toronto, ON M5S 3G3, Canada
[3] Cardiff Univ, Sch Math, Cardiff CF24 4YH, S Glam, Wales
关键词
D O I
10.1090/S0002-9947-03-03104-0
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let Q(x, y) be a primitive positive definite quadratic form with integer coefficients. Then, for all (s, t) is an element of R-2 there exist (m, n) is an element of Z(2) such that Q(m, n) is prime and Q(m - s, n - t) << Q(s, t)(0.53) + 1. This is deduced from another result giving an estimate for the number of prime ideals in an ideal class of an imaginary quadratic number field that fall in a given sector and whose norm lies in a short interval.
引用
收藏
页码:599 / 620
页数:22
相关论文
共 18 条
[1]  
Baker R. C., 1996, SIEVE METHODS EXPONE, V237, P1, DOI DOI 10.1017/CBO9780511526091.004
[2]   The difference between consecutive primes [J].
Baker, RC ;
Harman, G .
PROCEEDINGS OF THE LONDON MATHEMATICAL SOCIETY, 1996, 72 :261-280
[3]   The difference between consecutive primes, II [J].
Baker, RC ;
Harman, G ;
Pintz, J .
PROCEEDINGS OF THE LONDON MATHEMATICAL SOCIETY, 2001, 83 :532-562
[4]   Relative norms of prime ideals in small regions [J].
Coleman, MD .
MATHEMATIKA, 1996, 43 (85) :40-62
[5]   THE ROSSER-IWANIEC SIEVE IN NUMBER-FIELDS, WITH AN APPLICATION [J].
COLEMAN, MD .
ACTA ARITHMETICA, 1993, 65 (01) :53-83
[6]   A ZERO-FREE REGION FOR THE HECKE L-FUNCTIONS [J].
COLEMAN, MD .
MATHEMATIKA, 1990, 37 (74) :287-304
[7]  
COLEMAN MD, 1990, P LOND MATH SOC, V61, P433
[8]  
HARMAN G, 1983, J LOND MATH SOC, V27, P9
[9]  
Harman G, 1996, P LOND MATH SOC, V72, P241
[10]  
HARMAN G, IN PRESS MATHEMATIKA