Design of High-Performance Wearable Energy and Sensor Electronics from Fiber Materials

被引:51
作者
Chen, Yuejiao [1 ,2 ]
Xu, Bingang [1 ]
Gong, Jianliang [1 ]
Wen, Jianfeng [1 ]
Hua, Tao [1 ]
Kan, Chi-Wai [1 ]
Deng, Jiwei [3 ]
机构
[1] Hong Kong Polytech Univ, Nanotechnol Ctr, Inst Text & Clothing, Hung Hom,Kowloon, Hong Kong 999077, Peoples R China
[2] Cent South Univ, State Key Lab Powder Met, Changsha 410083, Hunan, Peoples R China
[3] Cent South Univ, Coll Mech & Elect Engn, Changsha 410083, Hunan, Peoples R China
关键词
fiber materials; energy storage; energy harvesting; strain sensors; flexible electronics; nickel coating; STRAIN SENSOR; TRIBOELECTRIC NANOGENERATORS; ASYMMETRIC SUPERCAPACITOR; CARBON CLOTH; GRAPHENE; YARN; FILM; STORAGE; FABRICS; GROWTH;
D O I
10.1021/acsami.8b16167
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
A fiber material is composed of a group of flexible fibers that are assembled in a certain dimensionality. With its good flexibility, high porosity, and large surface area, it demonstrates a great potential in the development of flexible and wearable electronics. In this work, a kind of nickel/active material-coated flexible fiber (NMF) electrodes, such as Ni/MnO2/reduced graphene oxide (rGO) NMF electrodes, Ni/carbon nanotube (CNT) NMF electrodes, and Ni/G NMF electrodes, is developed by a new general method. In contrast with previous approaches, it is for the first time that porous and rich hydrophilic structures of fiber materials have been used as the substrate to fully absorb active materials from their suspension or slurry and then to deposit a Ni layer on active material-coated fiber materials. The proposed processes of active material dip-coating and then Ni electroless plating not only greatly enhance the electrical conductivity and functional performance of fiber materials but also can be applied to an extensive diversity of fiber materials, such as fabrics, yarns, papers, and so on, with outstanding flexibility, lightweight, high stability, and conductivity for making kinds of energy and sensor devices. As demonstration, a two-dimensional (2D) Ni/MnO2/rGO NMF electrode is obtained for supercapacitors, showing excellent electrochemical performance for energy storage. Then, Ni/CNT NMF electrodes with different dimensionalities, including one-dimensional fiber-shaped, 2D plane, and three-dimensional spatial, are fabricated as various tensile and compressive strain sensors for observation of human's movements and health. Finally, a 2D Ni/graphene NMF electrode is developed for assembling triboelectric nanogenerators for mechanical energy harvesting. Benefiting from wearable property of the textile substrates, the obtained NMF electrodes are expected to be designed into kinds of wearable devices for the future practical applications. The NMF electrode designed in this work provides a simple, stable, and effective approach for designing and fabricating wearable energy and sensor electronics from fiber materials.
引用
收藏
页码:2120 / 2129
页数:10
相关论文
共 58 条
[1]   Lithium Aluminum Hydride as Reducing Agent for Chemically Reduced Graphene Oxides [J].
Ambrosi, Adriano ;
Chua, Chun Kiang ;
Bonanni, Alessandra ;
Pumera, Martin .
CHEMISTRY OF MATERIALS, 2012, 24 (12) :2292-2298
[2]   Stretchable, Skin-Mountable, and Wearable Strain Sensors and Their Potential Applications: A Review [J].
Amjadi, Morteza ;
Kyung, Ki-Uk ;
Park, Inkyu ;
Sitti, Metin .
ADVANCED FUNCTIONAL MATERIALS, 2016, 26 (11) :1678-1698
[3]   Textile-Based Weft Knitted Strain Sensors: Effect of Fabric Parameters on Sensor Properties [J].
Atalay, Ozgur ;
Kennon, William Richard ;
Husain, Muhammad Dawood .
SENSORS, 2013, 13 (08) :11114-11127
[4]   Graphene-based transparent strain sensor [J].
Bae, Sang-Hoon ;
Lee, Youngbin ;
Sharma, Bhupendra K. ;
Lee, Hak-Joo ;
Kim, Jae-Hyun ;
Ahn, Jong-Hyun .
CARBON, 2013, 51 :236-242
[5]   Cylindrical Rotating Triboelectric Nanogenerator [J].
Bai, Peng ;
Zhu, Guang ;
Liu, Ying ;
Chen, Jun ;
Jing, Qingshen ;
Yang, Weiqing ;
Ma, Jusheng ;
Zhang, Gong ;
Wang, Zhong Lin .
ACS NANO, 2013, 7 (07) :6361-6366
[6]   Towards Textile Energy Storage from Cotton T-Shirts [J].
Bao, Lihong ;
Li, Xiaodong .
ADVANCED MATERIALS, 2012, 24 (24) :3246-3252
[7]   Flexible and wearable strain sensing fabrics [J].
Cai, Guangming ;
Yang, Mengyun ;
Xu, Zhenglin ;
Liu, Jiangang ;
Tang, Bin ;
Wang, Xungai .
CHEMICAL ENGINEERING JOURNAL, 2017, 325 :396-403
[8]   Metal-like fluorine-doped β-FeOOH nanorods grown on carbon cloth for scalable high-performance supercapacitors [J].
Chen, Li-Feng ;
Yu, Zi-You ;
Wang, Jia-Jun ;
Li, Qun-Xiang ;
Tan, Zi-Qi ;
Zhu, Yan-Wu ;
Yu, Shu-Hong .
NANO ENERGY, 2015, 11 :119-128
[9]   In situ hydrothermal growth of ferric oxides on carbon cloth for low-cost and scalable high-energy-density supercapacitors [J].
Chen, Li-Feng ;
Yu, Zi-You ;
Ma, Xiao ;
Li, Zhe-Yang ;
Yu, Shu-Hong .
NANO ENERGY, 2014, 9 :345-354
[10]   Bacterial-Cellulose-Derived Carbon Nanofiber@MnO2 and Nitrogen-Doped Carbon Nanofiber Electrode Materials: An Asymmetric Supercapacitor with High Energy and Power Density [J].
Chen, Li-Feng ;
Huang, Zhi-Hong ;
Liang, Hai-Wei ;
Guan, Qing-Fang ;
Yu, Shu-Hong .
ADVANCED MATERIALS, 2013, 25 (34) :4746-4752