A web-based system for neural network based classification in temporomandibular joint osteoarthritis

被引:49
作者
de Dumast, Priscille [1 ]
Mirabel, Clement [1 ]
Cevidanes, Lucia [1 ]
Ruellas, Antonio [1 ]
Yatabe, Marilia [1 ]
Ioshida, Marcos [1 ]
Ribera, Nina Tubau [1 ]
Michoud, Loic [1 ]
Gomes, Liliane [1 ]
Huang, Chao [2 ]
Zhu, Hongtu [3 ]
Muniz, Luciana [1 ]
Shoukri, Brandon [1 ]
Paniagua, Beatriz [4 ]
Styner, Martin [5 ,6 ]
Pieper, Steve [7 ]
Budin, Francois [4 ]
Vimort, Jean-Baptiste [4 ]
Pascal, Laura [4 ]
Prieto, Juan Carlos [5 ]
机构
[1] Univ Michigan, Dept Orthodont & Pediat Dent, Ann Arbor, MI 48109 USA
[2] Univ N Carolina, Chapel Hill, NC 27515 USA
[3] Univ Texas MD Anderson Canc Ctr, Houston, TX USA
[4] Kitware Inc, Carrboro, NC USA
[5] Univ N Carolina, Dept Psychiat, Chapel Hill, NC 27515 USA
[6] Univ N Carolina, Dept Comp Sci, Chapel Hill, NC 27515 USA
[7] Isomics Inc, Cambridge, MA USA
基金
美国国家卫生研究院;
关键词
Neural network; Web-Based system; Osteoarthritis; RESEARCH DIAGNOSTIC-CRITERIA; DISORDERS RDC/TMD; AXIS I; RELIABILITY; BIOMARKERS;
D O I
10.1016/j.compmedimag.2018.04.009
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
Objective: The purpose of this study is to describe the methodological innovations of a web-based system for storage, integration and computation of biomedical data, using a training imaging dataset to remotely compute a deep neural network classifier of temporomandibular joint osteoarthritis (TMJOA). Methods: This study imaging dataset consisted of three-dimensional (3D) surface meshes of mandibular condyles constructed from cone beam computed tomography (CBCT) scans. The training dataset consisted of 259 condyles, 105 from control subjects and 154 from patients with diagnosis of TMJ OA. For the image analysis classification, 34 right and left condyles from 17 patients (39.9 +/- 11.7 years), who experienced signs and symptoms of the disease for less than 5 years, were included as the testing dataset. For the integrative statistical model of clinical, biological and imaging markers, the sample consisted of the same 17 test OA subjects and 17 age and sex matched control subjects (39.4 +/- 15.4 years), who did not show any sign or symptom of OA. For these 34 subjects, a standardized clinical questionnaire, blood and saliva samples were also collected. The technological methodologies in this study include a deep neural network classifier of 3D condylar morphology (ShapeVariationAnalyzer, SVA), and a flexible web-based system for data storage, computation and integration (DSCI) of high dimensional imaging, clinical, and biological data. Results: The DSCI system trained and tested the neural network, indicating 5 stages of structural degenerative changes in condylar morphology in the TMJ with 91% close agreement between the clinician consensus and the SVA classifier. The DSCI remotely ran with a novel application of a statistical analysis, the Multivariate Functional Shape Data Analysis, that computed high dimensional correlations between shape 3D coordinates, clinical pain levels and levels of biological markers, and then graphically displayed the computation results. Conclusions: The findings of this study demonstrate a comprehensive phenotypic characterization of TMJ health and disease at clinical, imaging and biological levels, using novel flexible and versatile open-source tools for a web-based system that provides advanced shape statistical analysis and a neural network based classification of temporomandibular joint osteoarthritis.
引用
收藏
页码:45 / 54
页数:10
相关论文
共 37 条
[1]  
Abadi M., 2016, TENSORFLOW LARGESCAL
[2]   Developments in the scientific understanding of osteoarthritis [J].
Abramson, Steven B. ;
Attur, Mukundan .
ARTHRITIS RESEARCH & THERAPY, 2009, 11 (03)
[3]   Research diagnostic criteria for temporomandibular disorders (RDC/TMD): development of image analysis criteria and examiner reliability for image analysis [J].
Ahmad, Mansur ;
Hollender, Lars ;
Anderson, Quentin ;
Kartha, Krishnan ;
Ohrbach, Richard ;
Truelove, Edmond L. ;
John, Mike T. ;
Schiffman, Eric L. .
ORAL SURGERY ORAL MEDICINE ORAL PATHOLOGY ORAL RADIOLOGY AND ENDODONTOLOGY, 2009, 107 (06) :844-860
[4]   Predicting Early Symptomatic Osteoarthritis in the Human Knee Using Machine Learning Classification of Magnetic Resonance Images From the Osteoarthritis Initiative [J].
Ashinsky, Beth G. ;
Bouhrara, Mustapha ;
Coletta, Christopher E. ;
Lehallier, Benoit ;
Urish, Kenneth L. ;
Lin, Ping-Chang ;
Goldberg, Ilya G. ;
Spencer, Richard G. .
JOURNAL OF ORTHOPAEDIC RESEARCH, 2017, 35 (10) :2243-2250
[5]   Discovering the false discovery rate [J].
Benjamini, Yoav .
JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES B-STATISTICAL METHODOLOGY, 2010, 72 :405-416
[6]   3D osteoarthritic changes in TMJ condylar morphology correlates with specific systemic and local biomarkers of disease [J].
Cevidanes, L. H. S. ;
Walker, D. ;
Schilling, J. ;
Sugai, J. ;
Giannobile, W. ;
Paniagua, B. ;
Benavides, E. ;
Zhu, H. ;
Marron, J. S. ;
Jung, B. T. ;
Baranowski, D. ;
Rhodes, J. ;
Nackley, A. ;
Lim, P. F. ;
Ludlow, J. B. ;
Nguyen, T. ;
Goncalves, J. R. ;
Wolford, L. ;
Kapila, S. ;
Styner, M. .
OSTEOARTHRITIS AND CARTILAGE, 2014, 22 (10) :1657-1667
[7]  
Dumast P. D, 2017, SHAPE VARIATION ANAL
[8]  
Fan J., 1996, LOCAL POLYNOMIAL MOD
[9]   3D Slicer as an image computing platform for the Quantitative Imaging Network [J].
Fedorov, Andriy ;
Beichel, Reinhard ;
Kalpathy-Cramer, Jayashree ;
Finet, Julien ;
Fillion-Robin, Jean-Christophe ;
Pujol, Sonia ;
Bauer, Christian ;
Jennings, Dominique ;
Fennessy, Fiona ;
Sonka, Milan ;
Buatti, John ;
Aylward, Stephen ;
Miller, James V. ;
Pieper, Steve ;
Kikinis, Ron .
MAGNETIC RESONANCE IMAGING, 2012, 30 (09) :1323-1341
[10]   Diagnostic index of 3D osteoarthritic changes in TMJ condylar morphology [J].
Gomes, Liliane R. ;
Gomes, Marcelo ;
Jung, Bryan ;
Paniagua, Beatriz ;
Ruellas, Antonio C. ;
Goncalves, Joao Roberto ;
Styner, Martin A. ;
Wolford, Larry ;
Cevidanes, Lucia .
MEDICAL IMAGING 2015: COMPUTER-AIDED DIAGNOSIS, 2015, 9414