Dust-particle transport in tokamak edge plasmas

被引:131
作者
Pigarov, AY [1 ]
Krasheninnikov, SI
Soboleva, TK
Rognlien, TD
机构
[1] Univ Calif San Diego, La Jolla, CA 92093 USA
[2] Univ Nacl Autonoma Mexico, Mexico City 04510, DF, Mexico
[3] Lawrence Livermore Natl Lab, Livermore, CA 95440 USA
关键词
D O I
10.1063/1.2145157
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
Dust particulates in the size range of 10 nm-100 mu m are found in all fusion devices. Such dust can be generated during tokamak operation due to strong plasma/material-surface interactions. Some recent experiments and theoretical estimates indicate that dust particles can provide an important source of impurities in the tokamak plasma. Moreover, dust can be a serious threat to the safety of next-step fusion devices. In this paper, recent experimental observations on dust in fusion devices are reviewed. A physical model for dust transport simulation and a newly developed code DUSTT are discussed. The DUSTT code incorporates both dust dynamics due to comprehensive dust-plasma interactions as well as the effects of dust heating, charging, and evaporation. The code tracks test dust particles in realistic plasma backgrounds as provided by edge-plasma transport codes. The results are presented for dust transport in current and next-step tokamaks. The effect of dust on divertor plasma profiles and core plasma contamination is examined. (c) 2005 American Institute of Physics.
引用
收藏
页码:1 / 15
页数:15
相关论文
共 101 条
[1]   Experimental evidence of intermittent convection in the edge of magnetic confinement devices [J].
Antar, GY ;
Krasheninnikov, SI ;
Devynck, P ;
Doerner, RP ;
Hollmann, EM ;
Boedo, JA ;
Luckhardt, SC ;
Conn, RW .
PHYSICAL REVIEW LETTERS, 2001, 87 (06) :65001-1
[2]  
ANTAR GY, COMMUNICATION
[3]   NWChem for materials science [J].
Aprà, E ;
Bylaska, EJ ;
Dean, DJ ;
Fortunelli, A ;
Gao, F ;
Krstic, PS ;
Wells, JC ;
Windus, TL .
COMPUTATIONAL MATERIALS SCIENCE, 2003, 28 (02) :209-221
[4]   Experimental study of different carbon dust growth mechanisms [J].
Arnas, C ;
Dominique, C ;
Roubin, P ;
Martin, C ;
Laffon, C ;
Parent, P ;
Brosset, C ;
Pégourié, B .
JOURNAL OF NUCLEAR MATERIALS, 2005, 337 (1-3) :69-73
[5]   Hot electron target interaction experiments at the GOL-3 facility [J].
Astrelin, VT ;
Burdakov, AV ;
Chebotaev, PZ ;
Filippov, VV ;
Koidan, VS ;
Mekler, KI ;
Melnikov, PI ;
Postupaev, VV ;
Rovenskikh, AF ;
Shcheglov, MA ;
Würz, H .
NUCLEAR FUSION, 1997, 37 (11) :1541-1558
[6]  
Baines M. J., 1965, Mon. Not. R. Astron. Soc., V130, P63, DOI [10.1093/mnras/130.1.63, DOI 10.1093/MNRAS/130.1.63]
[7]   Transport by intermittency in the boundary of the DIII-D tokamak [J].
Boedo, JA ;
Rudakov, DL ;
Moyer, RA ;
McKee, GR ;
Colchin, RJ ;
Schaffer, MJ ;
Stangeby, PG ;
West, WP ;
Allen, SL ;
Evans, TE ;
Fonck, RJ ;
Hollmann, EM ;
Krasheninnikov, S ;
Leonard, AW ;
Nevins, W ;
Mahdavi, MA ;
Porter, GD ;
Tynan, GR ;
Whyte, DG ;
Xu, X .
PHYSICS OF PLASMAS, 2003, 10 (05) :1670-1677
[9]   Characterization and analysis of dusts produced in three experimental tokamaks: TFTR, DIII-D, and Alcator C-Mod [J].
Carmack, WJ ;
Anderl, RA ;
Pawelko, RJ ;
Smolik, GR ;
McCarthy, KA .
FUSION ENGINEERING AND DESIGN, 2000, 51-52 :477-484
[10]   Collection and analysis of particulate from the DIII-D Tokamak [J].
Carmack, WJ ;
McCarthy, KA ;
Petti, DA ;
Kellman, AG ;
Wong, CPC .
FUSION ENGINEERING AND DESIGN, 1998, 39-40 :477-483