Natural extensions and entropy of α-continued fractions

被引:31
作者
Kraaikamp, Cor [1 ,2 ]
Schmidt, Thomas A. [3 ]
Steiner, Wolfgang [4 ]
机构
[1] Delft Univ Technol, NL-2628 CD Delft, Netherlands
[2] EWI, Thomas Stieltjes Inst Math, NL-2628 CD Delft, Netherlands
[3] Oregon State Univ, Corvallis, OR 97331 USA
[4] Univ Paris 07, LIAFA, CNRS, UMR 7089, F-75205 Paris 13, France
关键词
EXPANSIONS;
D O I
10.1088/0951-7715/25/8/2207
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We construct a natural extension for each of Nakada's alpha-continued fraction transformations and show the continuity as a function of alpha of both the entropy and the measure of the natural extension domain with respect to the density function (1 + xy)(-2). For 0 < alpha <= 1, we show that the product of the entropy with the measure of the domain equals pi(2)/6. We show that the interval (3 - root 5)/2 <= alpha <= (1 + root 5)/2 is a maximal interval upon which the entropy is constant. As a key step for all this, we give the explicit relationship between the a-expansion of alpha - 1 and of alpha.
引用
收藏
页码:2207 / 2243
页数:37
相关论文
共 23 条
[1]  
ABRAMOV LM, 1959, DOKL AKAD NAUK SSSR+, V128, P647
[2]  
ABRAMOV LM, 1966, AM MATH SOC TRANSL 2, V49, P162
[3]   On the complexity of algebraic numbers, II. Continued fractions [J].
Adamczewski, Boris ;
Bugeaud, Yann .
ACTA MATHEMATICA, 2005, 195 (01) :1-20
[4]  
Bonanno C, 2012, DISCRETE CONTI UNPUB
[5]  
Carminati C, 2012, ERGOD THEOR IN PRESS
[6]   The entropy of α-continued fractions: numerical results [J].
Carminati, Carlo ;
Marmi, Stefano ;
Profeti, Alessandro ;
Tiozzo, Giulio .
NONLINEARITY, 2010, 23 (10) :2429-2456
[7]  
Dajani K, 2009, J EUR MATH SOC, V11, P1259
[8]   On a sequence related to that of Thue-Morse and its applications [J].
Dubickas, Arturas .
DISCRETE MATHEMATICS, 2007, 307 (9-10) :1082-1093
[9]   BETA-EXPANSIONS, NATURAL EXTENSIONS AND MULTIPLE TILINGS ASSOCIATED WITH PISOT UNITS [J].
Kalle, Charlene ;
Steiner, Wolfgang .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2012, 364 (05) :2281-2318
[10]   A continued fraction titbit [J].
Keane, M .
FRACTALS-AN INTERDISCIPLINARY JOURNAL ON THE COMPLEX GEOMETRY OF NATURE, 1995, 3 (04) :641-650