Models for one-dimensional molecular magnets

被引:2
作者
Reis, M. S. [1 ]
机构
[1] Univ Fed Fluminense, Inst Fis, BR-24210346 Niteroi, RJ, Brazil
关键词
Molecular magnets; Magnetic chains; Computational routine; HEISENBERG CHAIN; ALTERNATION; ANISOTROPY; SPIN; S=1;
D O I
10.1016/j.cpc.2011.09.003
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
Since the middle of the last century several models have been developed to describe the magnetic properties of one-dimensional (chain) systems. On the other hand, during the last decades several important synthesis techniques have also been developed and new materials with low-dimensional character appeared; and thus, those models tested. However, nowadays, there is a plant of new materials, with potential applications, requiring an efficient and fast magnetic characterization. This is the aim of the present paper, to provide a fully automatized routine, added to the CARDAMOMO package, to analyze eight different magnetic chains, including uni- and duo-metallic, regular and irregular chains. (C) 2011 Elsevier B.V. All rights reserved.
引用
收藏
页码:99 / 105
页数:7
相关论文
共 50 条
[21]   Correlation functions for one-dimensional bosons at low temperature [J].
Kozlowski, K. K. ;
Maillet, J. M. ;
Slavnov, N. A. .
JOURNAL OF STATISTICAL MECHANICS-THEORY AND EXPERIMENT, 2011,
[22]   Ballistic transport in one-dimensional bilayer hole systems [J].
Danneau, R. ;
Clarke, W. R. ;
Klochan, O. ;
Ho, L. H. ;
Micolich, A. P. ;
Hamilton, A. R. ;
Simmons, M. Y. ;
Pepper, M. ;
Ritchie, D. A. .
PHYSICA E-LOW-DIMENSIONAL SYSTEMS & NANOSTRUCTURES, 2006, 34 (1-2) :550-552
[23]   Universal thermodynamics of the one-dimensional attractive Hubbard model [J].
Cheng, Song ;
Yu, Yi-Cong ;
Batchelor, M. T. ;
Guan, Xi-Wen .
PHYSICAL REVIEW B, 2018, 97 (12)
[24]   Topology and the one-dimensional Kondo-Heisenberg model [J].
May-Mann, Julian ;
Levy, Ryan ;
Soto-Garrido, Rodrigo ;
Cho, Gil Young ;
Clark, Bryan K. ;
Fradkin, Eduardo .
PHYSICAL REVIEW B, 2020, 101 (16)
[25]   Asymptotic expansions for correlation functions of one-dimensional bosons [J].
Slavnov, N. A. .
THEORETICAL AND MATHEMATICAL PHYSICS, 2013, 174 (01) :109-121
[26]   One-dimensional harmonically confined SU(N) fermions [J].
Gordillo, M. C. ;
Mazzanti, F. ;
Boronat, J. .
PHYSICAL REVIEW A, 2019, 100 (02)
[27]   Magnetism in Strongly Interacting One-Dimensional Quantum Mixtures [J].
Massignan, Pietro ;
Levinsen, Jesper ;
Parish, Meera M. .
PHYSICAL REVIEW LETTERS, 2015, 115 (24)
[28]   One-dimensional quantum spin heterojunction as a thermal switch [J].
Yang, Chuan-Jing ;
Jin, Li-Hui ;
Gong, Wei-Jiang .
INTERNATIONAL JOURNAL OF MODERN PHYSICS B, 2016, 30 (07)
[29]   Haldane phase in one-dimensional topological Kondo insulators [J].
Mezio, Alejandro ;
Lobos, Alejandro M. ;
Dobry, Ariel O. ;
Gazza, Claudio J. .
PHYSICAL REVIEW B, 2015, 92 (20)
[30]   THE ONE-DIMENSIONAL HUBBARD MODEL IN THE LIMIT OF u >> t [J].
Jakubczyk, Dorota .
REPORTS ON MATHEMATICAL PHYSICS, 2019, 83 (02) :139-162