Cyclostrophic vortices in polar regions of rotating planets

被引:2
作者
Goncharov, V
Pavlov, V [1 ]
机构
[1] Univ Lille 1, UFR Math Pures & Appl, F-59655 Villeneuve Dascq, France
[2] Russian Acad Sci, Inst Atmospher Phys, Moscow 109017, Russia
关键词
D O I
10.5194/npg-8-301-2001
中图分类号
P [天文学、地球科学];
学科分类号
07 ;
摘要
Multi-petal, rotating vortices can form in two-dimensional flows consisting of an inviscid incompressible fluid under certain conditions. Such vortices are principally nonlinear thermo-hydrodynamical structures. The proper rotation of these structures which leads to time-dependent variations of the associated temperature field can be enregistred by a stationary observer. The problem is analyzed in the framework of the contour dynamics method (CDM). An analytical solution of the reduced equation for a contour curvature is found. We give a classification of the solutions and compare the obtained results with observational data.
引用
收藏
页码:301 / 311
页数:11
相关论文
共 34 条
[1]  
Abramovitz M., 1964, HDB MATH FUNCTIONS
[2]  
[Anonymous], 2011, FUNDAMENTAL OCEAN DY
[3]  
[Anonymous], 1973, OPERATIONAL METHODS
[4]  
Bateman H., 1955, SCIENCE
[5]   CONTOUR DYNAMICS-SURGERY ON THE SPHERE [J].
DRITSCHEL, DG .
JOURNAL OF COMPUTATIONAL PHYSICS, 1988, 79 (02) :477-483
[6]   DOES CONTOUR DYNAMICS GO SINGULAR [J].
DRITSCHEL, DG ;
MCINTYRE, ME .
PHYSICS OF FLUIDS A-FLUID DYNAMICS, 1990, 2 (05) :748-753
[7]   MODELING OCEANIC AND ATMOSPHERIC VORTICES [J].
DRITSCHEL, DG ;
LEGRAS, B .
PHYSICS TODAY, 1993, 46 (03) :44-51
[8]  
Frisch U., 1995, TURBULENCE, DOI [10.1017/CBO9781139170666, DOI 10.1017/CBO9781139170666]
[9]  
Gill AE., 1982, ATMOSPHERE OCEAN DYN, P317, DOI 10.1016/S0074-6142(08)60034-0
[10]   Large-scale vortex structures in shear flows [J].
Goncharov, VP ;
Pavlov, VI .
EUROPEAN JOURNAL OF MECHANICS B-FLUIDS, 2000, 19 (06) :831-854