Discrete-time neural synchronization between an Arduino microcontroller and a Compact Development System using multiscroll chaotic signals

被引:17
作者
Castaneda, Carlos E. [1 ]
Lopez-Mancilla, D. [1 ]
Villafana-Rauda, R. Chiu E. [1 ]
Orozco-Lopez, Onofre [1 ]
Casillas-Rodriguez, F. [1 ]
Sevilla-Escoboza, R. [1 ]
机构
[1] Univ Guadalajara, Ctr Univ Lagos, Enr Diaz Leon, Lagos De Moreno 47460, Jalisco, Mexico
关键词
Chaos synchronization; Genesio & Tesi chaotic system; Recurrent neural networks; Arduino UNO microcontroller; MicroLabBox; Embedded systems; COMMUNICATION-SYSTEM; IMPLEMENTATION; DYNAMICS; NETWORK;
D O I
10.1016/j.chaos.2018.12.030
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we present the synchronization of a chaotic system using a discrete-time recurrent high order neural network. This is done by using a Genesio & Tesi oscillator circuit in discrete-time embedded into an Arduino microcontroller that provides the state space variables. A discrete-time recurrent neural network is designed to synchronize the dynamics of the chaotic oscillator. This neural network is trained using a time-varying training algorithm where it is used the Extended Kalman Filter. Two state space variables are captured in real-time in ADC inputs of a compact development system, where these signals are synchronized by the recurrent high order neural network in discrete-time. The proposed work allows synchronization of interactions associated between the neural convergence and the chaotical plant state. The obtained real-time results, and the statistical analyses on the synchronization process validate the possible application in chaos-based communications systems. (C) 2019 Elsevier Ltd. All rights reserved.
引用
收藏
页码:269 / 275
页数:7
相关论文
共 30 条
[1]   Neural network a"⟨a chaos synchronization [J].
Ahn, Choon Ki .
NONLINEAR DYNAMICS, 2010, 60 (03) :295-302
[2]   The control of chaos: theory and applications [J].
Boccaletti, S ;
Grebogi, C ;
Lai, YC ;
Mancini, H ;
Maza, D .
PHYSICS REPORTS-REVIEW SECTION OF PHYSICS LETTERS, 2000, 329 (03) :103-197
[3]   Complex networks: Structure and dynamics [J].
Boccaletti, S. ;
Latora, V. ;
Moreno, Y. ;
Chavez, M. ;
Hwang, D. -U. .
PHYSICS REPORTS-REVIEW SECTION OF PHYSICS LETTERS, 2006, 424 (4-5) :175-308
[4]   The synchronization of chaotic systems [J].
Boccaletti, S ;
Kurths, J ;
Osipov, G ;
Valladares, DL ;
Zhou, CS .
PHYSICS REPORTS-REVIEW SECTION OF PHYSICS LETTERS, 2002, 366 (1-2) :1-101
[5]   Decentralized neural identifier and control for nonlinear systems based on extended Kalman filter [J].
Castaneda, Carlos E. ;
Esquivel, P. .
NEURAL NETWORKS, 2012, 31 :81-87
[6]   Discrete-Time Neural Sliding-Mode Block Control for a DC Motor With Controlled Flux [J].
Castaneda, Carlos E. ;
Loukianov, Alexander G. ;
Sanchez, Edgar N. ;
Castillo-Toledo, Bernardino .
IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS, 2012, 59 (02) :1194-1207
[7]   Implementation of a Chaotic Oscillator into a Simple Microcontroller [J].
Chiu, R. ;
Mora-Gonzalez, M. ;
Lopez-Mancilla, D. .
2013 INTERNATIONAL CONFERENCE ON ELECTRONIC ENGINEERING AND COMPUTER SCIENCE (EECS 2013), 2013, 4 :247-252
[8]   Arduino-based chaotic secure communication system using multi-directional multi-scroll chaotic oscillators [J].
Dalia Pano-Azucena, Ana ;
de Jesus Rangel-Magdaleno, Jose ;
Tlelo-Cuautle, Esteban ;
de Jesus Quintas-Valles, Antonio .
NONLINEAR DYNAMICS, 2017, 87 (04) :2203-2217
[9]   Artificial neural network based chaotic generator for cryptology [J].
Dalkiran, Ilker ;
Danisman, Kenan .
TURKISH JOURNAL OF ELECTRICAL ENGINEERING AND COMPUTER SCIENCES, 2010, 18 (02) :225-240
[10]   Effects of carrying capacity and delay on the dynamics of Lotka-Volterra system: Mathematical, numerical and microcontroller simulation [J].
Eugenie, Tekougoum Metioguim ;
Gael, Ngouabo Ulrich ;
Samuel, Noubissie ;
Bertrand, Fotsin Hilaire ;
Paul, Woafo .
COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2018, 62 :454-461