Fixed-Length Lossy Compression in the Finite Blocklength Regime

被引:173
作者
Kostina, Victoria [1 ]
Verdu, Sergio [1 ]
机构
[1] Princeton Univ, Dept Elect Engn, Princeton, NJ 08544 USA
基金
美国国家科学基金会; 加拿大自然科学与工程研究理事会;
关键词
Achievability; converse; finite blocklength regime; lossy source coding; memoryless sources; rate distortion; Shannon theory; ERROR EXPONENT; REDUNDANCY; PROBABILITY; CONVERSES;
D O I
10.1109/TIT.2012.2186786
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
This paper studies the minimum achievable source coding rate as a function of blocklength n and probability epsilon that the distortion exceeds a given level d. Tight general achievability and converse bounds are derived that hold at arbitrary fixed blocklength. For stationary memoryless sources with separable distortion, the minimum rate achievable is shown to be closely approximated by R(d) + root V(d)/n Q(-1) (epsilon), where R(d) is the rate-distortion function, V(d) is the rate dispersion, a characteristic of the source which measures its stochastic variability, and Q(-1) (.) is the inverse of the standard Gaussian complementary cumulative distribution function.
引用
收藏
页码:3309 / 3338
页数:30
相关论文
共 37 条
[1]  
[Anonymous], P 41 ANN ALL C COMM
[2]  
[Anonymous], THESIS MIT CAMBRIDGE
[3]  
Barron A. R., 1985, THESIS STANFORD U ST
[4]  
Berger T, 1971, Rate Distortion Theory. A Mathematical Basis for Data Compression
[5]   COMPUTATION OF CHANNEL CAPACITY AND RATE-DISTORTION FUNCTIONS [J].
BLAHUT, RE .
IEEE TRANSACTIONS ON INFORMATION THEORY, 1972, 18 (04) :460-+
[6]  
Csiszar I., 1974, STUD SCI MATH HUNG, V9, P57
[7]   Source coding, large deviations, and approximate pattern matching [J].
Dembo, A ;
Kontoyiannis, I .
IEEE TRANSACTIONS ON INFORMATION THEORY, 2002, 48 (06) :1590-1615
[8]   Critical behavior in lossy source coding [J].
Dembo, A ;
Kontoyiannis, I .
IEEE TRANSACTIONS ON INFORMATION THEORY, 2001, 47 (03) :1230-1236
[9]  
Dembo A, 1999, ANN APPL PROBAB, V9, P413
[10]  
Erokhin V., 1958, Theory of Probability and Ap- plications, V3, P97, DOI DOI 10.1137/1103008