Stability and asymptotic behaviour of solutions of the heat equation

被引:2
作者
Aassila, M [1 ]
机构
[1] Univ Fribourg, Inst Math, CH-1700 Fribourg, Switzerland
关键词
heat equation; boundary control; stabilization; proportional time delay;
D O I
10.1093/imamat/69.1.93
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper we study the boundary stabilization of the heat equation. The stabilization is achieved by applying either Dirichlet or Neumann feedback boundary control. Furthermore, we consider the asymptotic behaviour of the heat equation with general linear delay or nonlinear power time delay. We prove that the energy does not grow faster than a polynomial.
引用
收藏
页码:93 / 109
页数:17
相关论文
共 18 条
[2]  
CARLSAW MS, 1921, INTRO MATH THEORY CO
[3]   SOME EXISTENCE RESULTS FOR SUPERLINEAR ELLIPTIC BOUNDARY-VALUE-PROBLEMS INVOLVING CRITICAL EXPONENTS [J].
CERAMI, G ;
SOLIMINI, S ;
STRUWE, M .
JOURNAL OF FUNCTIONAL ANALYSIS, 1986, 69 (03) :289-306
[4]  
Filo J., 1987, Aplikace Matematiky, V32, P364
[5]  
FUJITA H, 1966, J FAC SCI U TOKYO 1, V13, P109
[6]  
FUJITA H, 1968, P S PUR MATH AM MATH, V18, P105
[7]  
Galaktionov VA, 1981, Differentsialnye Uravneniya, V17, P836
[8]  
Ikehata R., 2000, HIROSHIMA MATH J, V30, P117
[9]  
Ikehata R., 2000, Differential Integral Equations, V13, P869
[10]  
KATO T, 1971, B AM MATH SOC, V77, P891