Graphs of finite measure

被引:30
作者
Georgakopoulos, Agelos [1 ]
Haeseler, Sebastian [2 ]
Keller, Matthias [2 ]
Lenz, Daniel [2 ]
Wojciechowski, Radoslaw K. [3 ]
机构
[1] Univ Warwick, Math Inst, Coventry CV4 7AL, W Midlands, England
[2] Univ Jena, Math Inst, D-07743 Jena, Germany
[3] CUNY York Coll, Jamaica, NY 11451 USA
来源
JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES | 2015年 / 103卷 / 05期
基金
以色列科学基金会; 英国工程与自然科学研究理事会;
关键词
Weighted graphs; Dirichlet Laplacian; Relative compactness; LARGE TIME BEHAVIOR; STOCHASTIC COMPLETENESS; ESSENTIAL SPECTRUM; VOLUME GROWTH; RANDOM-WALKS; HEAT KERNEL; DIRICHLET; CONSERVATIVENESS; LAPLACIANS; RECURRENCE;
D O I
10.1016/j.matpur.2014.10.006
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider weighted graphs with an infinite set of vertices. We show that boundedness of all functions of finite energy can be seen as a notion of 'relative compactness' for such graphs and study sufficient and necessary conditions for this property in terms of various metrics. We then equip graphs satisfying this property with a finite measure and investigate the associated Laplacian and its semigroup. In this context, our results include the trace class property for the semigroup, uniqueness and existence of solutions to the Dirichlet Problem with boundary arising from the natural compactification, an explicit description of the domain of the Dirichlet Laplacian, convergence of the heat semigroup for large times as well as stochastic incompleteness and transience of the corresponding random walk in continuous time. (C) 2014 Elsevier Masson SAS. All rights reserved.
引用
收藏
页码:1093 / 1131
页数:39
相关论文
共 61 条
[1]  
ANCONA A, 1988, LECT NOTES MATH, V1344, P1
[2]  
[Anonymous], J EUR MATH IN PRESS
[3]  
[Anonymous], ARXIV12013474V2
[4]   The dual Cheeger constant and spectra of infinite graphs [J].
Bauer, Frank ;
Hua, Bobo ;
Jost, Juergen .
ADVANCES IN MATHEMATICS, 2014, 251 :147-194
[5]   On the lp spectrum of Laplacians on graphs [J].
Bauer, Frank ;
Hua, Bobo ;
Keller, Matthias .
ADVANCES IN MATHEMATICS, 2013, 248 :717-735
[6]  
BENJAMINI I, 1992, ANN I H POINCARE-PR, V28, P557
[7]  
Carlson R., 2011, ARXIV11093137
[8]  
Carlson R, 2008, P SYMP PURE MATH, V77, P355
[9]   MYOPIC MODELS OF POPULATION DYNAMICS ON INFINITE NETWORKS [J].
Carlson, Robert .
NETWORKS AND HETEROGENEOUS MEDIA, 2014, 9 (03) :477-499
[10]   DIRICHLET TO NEUMANN MAPS FOR INFINITE QUANTUM GRAPHS [J].
Carlson, Robert .
NETWORKS AND HETEROGENEOUS MEDIA, 2012, 7 (03) :483-501