On the proximal point algorithm

被引:32
作者
Rouhani, B. Djafari [1 ]
Khatibzadeh, H. [2 ]
机构
[1] Univ Texas El Paso, Dept Math Sci, El Paso, TX 79968 USA
[2] Tarbiat Modares Univ, Dept Math, Tehran, Iran
关键词
proximal-point algorithms; variational inequalities; ergodic theorems; maximal monotone operators; asymptotic centers;
D O I
10.1007/s10957-007-9329-3
中图分类号
C93 [管理学]; O22 [运筹学];
学科分类号
070105 ; 12 ; 1201 ; 1202 ; 120202 ;
摘要
Let A be a maximal monotone operator in a real Hilbert space H and let {u(n)} be the sequence in H given by the proximal point algorithm, defined by u (n) =(I+c(n) A)(-1)(u(n-1)-f(n) ), for all n >= 1, with u(0) = z, where c(n) > 0 and f(n) is an element of H. We show, among other things, that under suitable conditions, u(n) converges weakly or strongly to a zero of A if and only if lim inf(n ->+infinity) vertical bar w(n)vertical bar +infinity, where w(n) = (Sigma(n)(k=1) c(k))(-1) Sigma(n)(k=1) c(k)u(k). Our results extend previous results by several authors who obtained similar results by assuming A(-1)(0) not equal phi.
引用
收藏
页码:411 / 417
页数:7
相关论文
共 11 条
[1]  
BAILLON JB, 1975, CR ACAD SCI A MATH, V280, P1511
[2]   INFINITE PRODUCTS OF RESOLVENTS [J].
BREZIS, H ;
LIONS, PL .
ISRAEL JOURNAL OF MATHEMATICS, 1978, 29 (04) :329-345
[3]  
Brezis H., 1973, N HOLLAND MATH STUDI, V5
[4]  
BRUCK RE, 1976, B AM MATH SOC, V82, P353
[5]  
Djafari Rouhani B., 1981, THESIS YALE U 1, P1
[7]   ITERATIVE SOLUTION OF VARIATIONAL INEQUALITY [J].
LIONS, PL .
ISRAEL JOURNAL OF MATHEMATICS, 1978, 31 (02) :204-208
[8]  
Morosanu G., 1988, MATH ITS APPL, V26
[9]   MONOTONE OPERATORS AND PROXIMAL POINT ALGORITHM [J].
ROCKAFELLAR, RT .
SIAM JOURNAL ON CONTROL, 1976, 14 (05) :877-898
[10]   ASYMPTOTIC-BEHAVIOR OF QUASI-AUTONOMOUS DISSIPATIVE SYSTEMS IN HILBERT-SPACES [J].
ROUHANI, BD .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 1990, 147 (02) :465-476