On the proximal point algorithm

被引:32
|
作者
Rouhani, B. Djafari [1 ]
Khatibzadeh, H. [2 ]
机构
[1] Univ Texas El Paso, Dept Math Sci, El Paso, TX 79968 USA
[2] Tarbiat Modares Univ, Dept Math, Tehran, Iran
关键词
proximal-point algorithms; variational inequalities; ergodic theorems; maximal monotone operators; asymptotic centers;
D O I
10.1007/s10957-007-9329-3
中图分类号
C93 [管理学]; O22 [运筹学];
学科分类号
070105 ; 12 ; 1201 ; 1202 ; 120202 ;
摘要
Let A be a maximal monotone operator in a real Hilbert space H and let {u(n)} be the sequence in H given by the proximal point algorithm, defined by u (n) =(I+c(n) A)(-1)(u(n-1)-f(n) ), for all n >= 1, with u(0) = z, where c(n) > 0 and f(n) is an element of H. We show, among other things, that under suitable conditions, u(n) converges weakly or strongly to a zero of A if and only if lim inf(n ->+infinity) vertical bar w(n)vertical bar +infinity, where w(n) = (Sigma(n)(k=1) c(k))(-1) Sigma(n)(k=1) c(k)u(k). Our results extend previous results by several authors who obtained similar results by assuming A(-1)(0) not equal phi.
引用
收藏
页码:411 / 417
页数:7
相关论文
共 50 条
  • [1] On the Proximal Point Algorithm
    B. Djafari Rouhani
    H. Khatibzadeh
    Journal of Optimization Theory and Applications, 2008, 137 : 411 - 417
  • [2] Proximal-Point Algorithm Using a Linear Proximal Term
    B. S. He
    X. L. Fu
    Z. K. Jiang
    Journal of Optimization Theory and Applications, 2009, 141 : 299 - 319
  • [3] Proximal-Point Algorithm Using a Linear Proximal Term
    He, B. S.
    Fu, X. L.
    Jiang, Z. K.
    JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS, 2009, 141 (02) : 299 - 319
  • [4] The Proximal Point Algorithm Revisited
    Dong, Yunda
    JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS, 2014, 161 (02) : 478 - 489
  • [5] Revisit the over-relaxed proximal point algorithm
    Huang, Zhenyu
    Noor, Muhammad Aslam
    APPLIED MATHEMATICS LETTERS, 2016, 62 : 55 - 62
  • [6] A relaxed approximate proximal point algorithm
    Yang, ZH
    He, BS
    ANNALS OF OPERATIONS RESEARCH, 2005, 133 (1-4) : 119 - 125
  • [7] Some Remarks on the Proximal Point Algorithm
    Khatibzadeh, Hadi
    JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS, 2012, 153 (03) : 769 - 778
  • [8] A Relaxed Approximate Proximal Point Algorithm
    Zhenhua Yang
    Bingsheng He
    Annals of Operations Research, 2005, 133 : 119 - 125
  • [9] Some Remarks on the Proximal Point Algorithm
    Hadi Khatibzadeh
    Journal of Optimization Theory and Applications, 2012, 153 : 769 - 778
  • [10] A proximal point algorithm with a φ-divergence for quasiconvex programming
    Cunha, F. G. M.
    da Cruz Neto, J. X.
    Oliveira, P. R.
    OPTIMIZATION, 2010, 59 (05) : 777 - 792