Truly Nonionic Polymer Shells for the Encapsulation of Living Cells

被引:48
作者
Carter, Jessica L. [1 ]
Drachuk, Irina [1 ]
Harbaugh, Svetlana [2 ]
Kelley-Loughnane, Nancy [2 ]
Stone, Morley [2 ]
Tsukruk, Vladimir V. [1 ]
机构
[1] Georgia Inst Technol, Sch Mat Sci & Engn, Atlanta, GA 30332 USA
[2] USAF, Res Lab, Directorate Human Effectiveness, Dayton, OH 45433 USA
关键词
atomic force microscopy (AFM); biological applications of polymers; cell encapsulation; layer-by-layer assembly; polymer membranes; SOL-GEL ENCAPSULATION; ALGINATE HYDROGELS; ULTRATHIN FILMS; TANNIC-ACID; THIN-FILMS; LAYER; CAPSULES; MULTILAYERS; SURFACE; ARRAYS;
D O I
10.1002/mabi.201100129
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Engineering surfaces of living cells with natural or synthetic compounds can mediate intercellular communication and provide a protective barrier from hostile agents. We report on truly nonionic hydrogen-bonded LbL coatings for cell surface engineering. These ultrathin, highly permeable polymer membranes are constructed on living cells without the cationic component typically employed to increase the stability of LbL coatings. Without the cytotoxic cationic PEI pre-layer, the viability of encapsulated cells drastically increases to 94%, in contrast to 20% viability in electrostatically-bonded LbL shells. Moreover, the long-term growth of encapsulated cells is not affected, thus facilitating efficient function of protected cells in hostile environment.
引用
收藏
页码:1244 / 1253
页数:10
相关论文
共 88 条
[1]   Electrostatic layer-by-layer nanoassembly on biological microtemplates: Platelets [J].
Ai, H ;
Fang, M ;
Jones, SA ;
Lvov, YM .
BIOMACROMOLECULES, 2002, 3 (03) :560-564
[2]   Regulating bone formation via controlled scaffold degradation [J].
Alsberg, E ;
Kong, HJ ;
Hirano, Y ;
Smith, MK ;
Albeiruti, A ;
Mooney, DJ .
JOURNAL OF DENTAL RESEARCH, 2003, 82 (11) :903-908
[3]   Enzyme-Encapsulated Layer-by-Layer Assemblies: Current Status and Challenges Toward Ultimate Nanodevices [J].
Ariga, Katsuhiko ;
Ji, Qingmin ;
Hill, Jonathan P. .
MODERN TECHNIQUES FOR NANO- AND MICROREACTORS/-REACTIONS, 2010, 229 :51-87
[4]   Biomaterials and Biofunctionality in Layered Macromolecular Assemblies [J].
Ariga, Katsuhiko ;
Hill, Jonathan P. ;
Ji, Qingmin .
MACROMOLECULAR BIOSCIENCE, 2008, 8 (11) :981-990
[5]   Alginate hydrogels as biomaterials [J].
Augst, Alexander D. ;
Kong, Hyun Joon ;
Mooney, David J. .
MACROMOLECULAR BIOSCIENCE, 2006, 6 (08) :623-633
[6]   Encapsulation of Bacterial Spores in Nanoorganized Polyelectrolyte Shells [J].
Balkundi, Shantanu S. ;
Veerabadran, Nalinkanth G. ;
Eby, D. Matthew ;
Johnson, Glenn R. ;
Lvov, Yuri M. .
LANGMUIR, 2009, 25 (24) :14011-14016
[7]   Intracellular route and transcriptional competence of polyethylenimine-DNA complexes [J].
Bieber, T ;
Meissner, W ;
Kostin, S ;
Niemann, A ;
Elsasser, HP .
JOURNAL OF CONTROLLED RELEASE, 2002, 82 (2-3) :441-454
[8]   Advances in preservation methods:: keeping biosensor microorganisms alive and active [J].
Bjerketorp, J ;
Håkansson, S ;
Belkin, S ;
Jansson, JK .
CURRENT OPINION IN BIOTECHNOLOGY, 2006, 17 (01) :43-49
[9]   Cytotoxicity of polyethyleneimine (PEI), precursor base layer of polyelectrolyte multilayer films [J].
Brunot, Celine ;
Ponsonnet, Laurence ;
Lagneau, Christelle ;
Farge, Pierre ;
Picart, Catherine ;
Grosgogeat, Brigitte .
BIOMATERIALS, 2007, 28 (04) :632-640
[10]   Encapsulation of functional cells by sol-gel silica: actual progress and perspectives for cell therapy [J].
Carturan, G ;
Dal Toso, R ;
Boninsegna, S ;
Dal Monte, R .
JOURNAL OF MATERIALS CHEMISTRY, 2004, 14 (14) :2087-2098