RMSE-minimizing confidence intervals for the binomial parameter

被引:2
作者
Feng, Kexin [1 ]
Leemis, Lawrence M. [1 ]
Sasinowska, Heather [1 ]
机构
[1] William & Mary, Dept Math, Williamsburg, VA 23185 USA
关键词
Actual coverage function; Approximate confidence interval; Binary data; Binomial distribution; Dyck word; INFERENCE;
D O I
10.1007/s00180-021-01183-3
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Let X be the number of successes in n mutually independent and identically distributed Bernoulli trials, each with probability of success p. For fixed n and alpha, there are n + 1 distinct two-sided 100(1-alpha)% confidence intervals for p associated with the outcomes X = 0, 1, 2,..., n. There is no known exact non-randomized confidence interval for p. Existing approximate confidence interval procedures use a formula, which often requires numerical methods to implement, to calculate confidence interval bounds. The bounds associated with these confidence intervals correspond to discontinuities in the actual coverage function. The paper does not aim to provide a formula for the confidence interval bounds, but rather to select the confidence interval bounds that minimize the root mean square error of the actual coverage function for sample size n and significance level a in the frequentist context.
引用
收藏
页码:1855 / 1885
页数:31
相关论文
共 16 条
[1]   Approximate is better than "exact" for interval estimation of binomial proportions [J].
Agresti, A ;
Coull, BA .
AMERICAN STATISTICIAN, 1998, 52 (02) :119-126
[2]  
ANSCOMBE FJ, 1956, BIOMETRIKA, V43, P461, DOI 10.1093/biomet/43.3-4.461
[3]   New two-sided confidence intervals for binomial inference derived using Walley's imprecise posterior likelihood as a test statistic [J].
Balch, Michael Scott .
INTERNATIONAL JOURNAL OF APPROXIMATE REASONING, 2020, 123 :77-98
[4]   Confidence curves and improved exact confidence intervals for discrete distributions [J].
Blaker, H .
CANADIAN JOURNAL OF STATISTICS-REVUE CANADIENNE DE STATISTIQUE, 2000, 28 (04) :783-798
[5]   Interval estimation for a binomial proportion - Comment - Rejoinder [J].
Brown, LD ;
Cai, TT ;
DasGupta, A ;
Agresti, A ;
Coull, BA ;
Casella, G ;
Corcoran, C ;
Mehta, C ;
Ghosh, M ;
Santner, TJ ;
Brown, LD ;
Cai, TT ;
DasGupta, A .
STATISTICAL SCIENCE, 2001, 16 (02) :101-133
[6]  
Clopper CJ, 1934, BIOMETRIKA, V26, P404, DOI 10.2307/2331986
[7]  
Deng LH, 2009, ARXIV PREPRINT ARXIV
[8]  
Johnson RW., 2001, Teach Stat, V23, P49, DOI [DOI 10.1111/1467-9639.00050, 10.1111/1467-9639.00050]
[9]  
KIM J, 2021, J KOREAN STAT SOC
[10]  
KuYsa, 2009, ACTA UNIV SAPIENTIAE, V1, P109