Weak perturbations of the p-Laplacian

被引:3
作者
Ekholm, Tomas [1 ]
Frank, Rupert L. [2 ]
Kovarik, Hynek [3 ]
机构
[1] Royal Inst Technol, Dept Math, S-10044 Stockholm, Sweden
[2] CALTECH, Math 253 37, Pasadena, CA 91125 USA
[3] Univ Brescia, DICATAM, Sez Matemat, I-25123 Brescia, Italy
基金
美国国家科学基金会; 瑞典研究理事会;
关键词
p-Laplacian; Weak coupling; Sobolev inequalities; VIRTUAL EIGENVALUES; POSITIVE SOLUTIONS; OPERATORS; STATE;
D O I
10.1007/s00526-014-0767-0
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider the p-Laplacian in perturbed by a weakly coupled potential. We calculate the asymptotic expansions of the lowest eigenvalue of such an operator in the weak coupling limit separately for and and discuss the connection with Sobolev interpolation inequalities.
引用
收藏
页码:781 / 801
页数:21
相关论文
共 32 条
[1]  
Adams R, 2003, PURE APPL MATH, V140
[2]  
Alvino A., 1977, Rend. Acc. Sci. Fis. Mat. Napoli, V44, P105
[3]  
[Anonymous], 1990, Hardy-Type Inequalities, Pitman Research Notes in Mathematics Series 219
[4]   Virtual eigenvalues of the high order Schrodinger operator II [J].
Arazy, Jonathan ;
Zelenko, Leonid .
INTEGRAL EQUATIONS AND OPERATOR THEORY, 2006, 55 (03) :305-345
[5]   Virtual eigenvalues of the high order Schrodinger operator I [J].
Arazy, Jonathan ;
Zelenko, Leonid .
INTEGRAL EQUATIONS AND OPERATOR THEORY, 2006, 55 (02) :189-231
[6]   Anomalous electron trapping by localized magnetic fields [J].
Bentosela, F ;
Cavalcanti, RM ;
Exner, P ;
Zagrebnov, VA .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1999, 32 (16) :3029-3039
[7]  
Birman M. Sh., 1961, Mat. Sb. (N.S.), V55, P125
[8]  
Birman M.Sh, 1966, Amer. Math. Soc. Transl., Ser., V2, P23
[9]   BOUND-STATES OF WEAKLY COUPLED LONG-RANGE ONE-DIMENSIONAL QUANTUM HAMILTONIANS [J].
BLANKENBECLER, R ;
GOLDBERGER, ML ;
SIMON, B .
ANNALS OF PHYSICS, 1977, 108 (01) :69-78
[10]   Weakly coupled bound states of Pauli operators [J].
Frank, Rupert L. ;
Morozov, Sergey ;
Vugalter, Semjon .
CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS, 2011, 40 (1-2) :253-271