Accelerated dinuclear palladium catalyst identification through unsupervised machine learning

被引:82
|
作者
Hueffel, Julian A. [1 ]
Sperger, Theresa [1 ]
Funes-Ardoiz, Ignacio [1 ]
Ward, Jas S. [2 ]
Rissanen, Kari [2 ]
Schoenebeck, Franziska [1 ]
机构
[1] Rhein Westfal TH Aachen, Inst Organ Chem, Landoltweg 1, D-52074 Aachen, Germany
[2] Univ Jyvaskyla, Dept Chem, POB 35, Jyvaskyla 40014, Finland
关键词
PHOSPHORUS LIGANDS; DESCRIPTORS; PREDICTION; ACYLATION; SCOPE;
D O I
10.1126/science.abj0999
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Although machine learning bears enormous potential to accelerate developments in homogeneous catalysis, the frequent need for extensive experimental data can be a bottleneck for implementation. Here, we report an unsupervised machine learning workflow that uses only five experimental data points. It makes use of generalized parameter databases that are complemented with problem-specific in silico data acquisition and clustering. We showcase the power of this strategy for the challenging problem of speciation of palladium (Pd) catalysts, for which a mechanistic rationale is currently lacking. From a total space of 348 ligands, the algorithm predicted, and we experimentally verified, a number of phosphine ligands (including previously never synthesized ones) that give dinuclear Pd-(I) complexes over the more common Pd-(0) and Pd-(II) species.
引用
收藏
页码:1134 / +
页数:86
相关论文
共 50 条
  • [1] Supervised and unsupervised machine learning for gender identification through hand's anthropometric data
    Hida, Nahid
    Abid, Mohamed
    Lakrad, Faouzi
    INTERNATIONAL JOURNAL OF BIOMETRICS, 2020, 12 (03) : 337 - 355
  • [2] IoT Device Identification Using Unsupervised Machine Learning
    Koball, Carson
    Rimal, Bhaskar P.
    Wang, Yong
    Salmen, Tyler
    Ford, Connor
    INFORMATION, 2023, 14 (06)
  • [3] Keratoconus severity identification using unsupervised machine learning
    Yousefi, Siamak
    Yousefi, Ebrahim
    Takahashi, Hidenori
    Hayashi, Takahiko
    Tampo, Hironobu
    Inoda, Satoru
    Arai, Yusuke
    Asbell, Penny
    PLOS ONE, 2018, 13 (11):
  • [4] Unsupervised Machine Learning for the Identification of Preflare Spectroscopic Signatures
    Woods, Magnus M.
    Sainz Dalda, Alberto
    De Pontieu, Bart
    ASTROPHYSICAL JOURNAL, 2021, 922 (02):
  • [5] Machine Tool Component Health Identification with Unsupervised Learning
    Gittler, Thomas
    Scholze, Stephan
    Rupenyan, Alisa
    Wegener, Konrad
    JOURNAL OF MANUFACTURING AND MATERIALS PROCESSING, 2020, 4 (03):
  • [6] Identifying topological order through unsupervised machine learning
    Joaquin F. Rodriguez-Nieva
    Mathias S. Scheurer
    Nature Physics, 2019, 15 : 790 - 795
  • [7] Understanding precipitation changes through unsupervised machine learning
    Mooers, Griffin
    Beucler, Tom
    Pritchard, Mike
    Mandt, Stephan
    ENVIRONMENTAL DATA SCIENCE, 2024, 3
  • [8] Identifying topological order through unsupervised machine learning
    Rodriguez-Nieva, Joaquin F.
    Scheurer, Mathias S.
    NATURE PHYSICS, 2019, 15 (08) : 790 - +
  • [9] Melt Instability Identification Using Unsupervised Machine Learning Algorithms
    Gansen, Alex
    Hennicker, Julian
    Sill, Clemens
    Dheur, Jean
    Hale, Jack S. S.
    Baller, Jorg
    MACROMOLECULAR MATERIALS AND ENGINEERING, 2023, 308 (06)
  • [10] A framework for speaker retrieval and identification through unsupervised learning
    Campos, Victor de Abreu
    Guimaraes Pedronette, Daniel Carlos
    COMPUTER SPEECH AND LANGUAGE, 2019, 58 (153-174): : 153 - 174