Seizure prediction using scalp electroencephalogram

被引:16
|
作者
Drury, I
Smith, B
Li, DZ
Savit, R
机构
[1] Diagnost Neurodynam LLC, Ann Arbor, MI 48104 USA
[2] Henry Ford Hlth Syst, Dept Neurol, Detroit, MI 48202 USA
[3] Univ Michigan, Dept Phys, Ann Arbor, MI 48109 USA
[4] Univ Michigan, Div Biophys Res, Ann Arbor, MI 48109 USA
关键词
mesial temporal lobe epilepsy; nonlinear dynamics; seizure prediction; marginal predictability;
D O I
10.1016/S0014-4886(03)00354-6
中图分类号
Q189 [神经科学];
学科分类号
071006 ;
摘要
Using a measure of nonlinear dynamical changes we term marginal predictability, we report evidence of robust changes in this parameter on scalp EEG in a cohort of patients with medically refractory mesiobasal temporal lobe epilepsy (MBTLE). In the baseline (interictal) state there are distinct differences in this nonlinear measure between epileptic and neurologically normal subjects. At baseline, in patients with MBTLE there are differences in these measures between electrodes adjacent to the ictal onset zone and more remotely placed electrodes. The character of these differences evolves over a period of approximately 30 min before a seizure. We discuss and integrate our findings with two emerging concepts in epileptology, first, the concept of a preictal or transition phase rather than an abrupt movement from interictal to ictal activity, and second, the notion of an epileptic neural network with changes in areas of brain remote from what has traditionally been considered the ictal onset zone influencing "ictogenesis." (C) 2003 Elsevier Inc. All rights reserved.
引用
收藏
页码:S9 / S18
页数:10
相关论文
共 50 条
  • [41] Patient-specific epileptic seizure prediction using correlation features
    Panichev, Oleg
    Popov, Anton
    Kharytonov, Volodymyr
    2015 Signal Processing Symposium (SPSympo), 2015,
  • [42] Epileptic Seizure Prediction Using Convolutional Autoencoder Based Deep Learning
    Gozutok, Burak
    Ademoglu, Ahmet
    29TH IEEE CONFERENCE ON SIGNAL PROCESSING AND COMMUNICATIONS APPLICATIONS (SIU 2021), 2021,
  • [43] Machine Unlearning for Seizure Prediction
    Shao, Chenghao
    Li, Chang
    Song, Rencheng
    Liu, Xiang
    Qian, Ruobing
    Chen, Xun
    IEEE TRANSACTIONS ON COGNITIVE AND DEVELOPMENTAL SYSTEMS, 2024, 16 (06) : 1969 - 1981
  • [44] Seizure Prediction and its Applications
    Iasemidis, Leon D.
    NEUROSURGERY CLINICS OF NORTH AMERICA, 2011, 22 (04) : 489 - +
  • [45] Calibrating Deep Learning Classifiers for Patient-Independent Electroencephalogram Seizure Forecasting
    Shafiezadeh, Sina
    Duma, Gian Marco
    Mento, Giovanni
    Danieli, Alberto
    Antoniazzi, Lisa
    Cristaldi, Fiorella Del Popolo
    Bonanni, Paolo
    Testolin, Alberto
    SENSORS, 2024, 24 (09)
  • [46] Epileptic Seizure Prediction using Stacked CNN-BiLSTM: A Novel Approach
    Quadri Z.F.
    Akhoon M.S.
    Loan S.A.
    IEEE Transactions on Artificial Intelligence, 2024, 5 (11): : 1 - 9
  • [47] Spatio-temporal MLP network for seizure prediction using EEG signals
    Li, Chang
    Shao, Chenghao
    Song, Rencheng
    Xu, Guoping
    Liu, Xiang
    Qian, Ruobing
    Chen, Xun
    MEASUREMENT, 2023, 206
  • [48] Seizure Prediction with Bipolar Spectral Power Features using Adaboost and SVM Classifiers
    Bandarabadi, Mojtaba
    Dourado, Antonio
    Teixeira, Cesar A.
    Netoff, Theoden I.
    Parhi, Keshab K.
    2013 35TH ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY (EMBC), 2013, : 6305 - 6308
  • [49] Seizure prediction in hippocampal and neocortical epilepsy using a model-based approach
    Aarabi, Ardalan
    He, Bin
    CLINICAL NEUROPHYSIOLOGY, 2014, 125 (05) : 930 - 940
  • [50] EEG Spectral Feature Based Seizure Prediction using an Efficient Sparse Classifier
    Prathap, Parvathy
    Devi, Aswathy T.
    2017 INTERNATIONAL CONFERENCE ON INTELLIGENT COMPUTING, INSTRUMENTATION AND CONTROL TECHNOLOGIES (ICICICT), 2017, : 721 - 725