Seizure prediction using scalp electroencephalogram

被引:16
|
作者
Drury, I
Smith, B
Li, DZ
Savit, R
机构
[1] Diagnost Neurodynam LLC, Ann Arbor, MI 48104 USA
[2] Henry Ford Hlth Syst, Dept Neurol, Detroit, MI 48202 USA
[3] Univ Michigan, Dept Phys, Ann Arbor, MI 48109 USA
[4] Univ Michigan, Div Biophys Res, Ann Arbor, MI 48109 USA
关键词
mesial temporal lobe epilepsy; nonlinear dynamics; seizure prediction; marginal predictability;
D O I
10.1016/S0014-4886(03)00354-6
中图分类号
Q189 [神经科学];
学科分类号
071006 ;
摘要
Using a measure of nonlinear dynamical changes we term marginal predictability, we report evidence of robust changes in this parameter on scalp EEG in a cohort of patients with medically refractory mesiobasal temporal lobe epilepsy (MBTLE). In the baseline (interictal) state there are distinct differences in this nonlinear measure between epileptic and neurologically normal subjects. At baseline, in patients with MBTLE there are differences in these measures between electrodes adjacent to the ictal onset zone and more remotely placed electrodes. The character of these differences evolves over a period of approximately 30 min before a seizure. We discuss and integrate our findings with two emerging concepts in epileptology, first, the concept of a preictal or transition phase rather than an abrupt movement from interictal to ictal activity, and second, the notion of an epileptic neural network with changes in areas of brain remote from what has traditionally been considered the ictal onset zone influencing "ictogenesis." (C) 2003 Elsevier Inc. All rights reserved.
引用
收藏
页码:S9 / S18
页数:10
相关论文
共 50 条
  • [21] Hybrid LSTM-Transformer Model for the Prediction of Epileptic Seizure Using Scalp EEG
    Xia, Lili
    Wang, Ruiqi
    Ye, Haiming
    Jiang, Bochang
    Li, Guang
    Ma, Chao
    Gao, Zhongke
    IEEE SENSORS JOURNAL, 2024, 24 (13) : 21123 - 21131
  • [22] Features and Recognition of Epileptic Seizure Prediction Based on Electroencephalogram Signals
    Shan Bao-Lian
    Zhang Li-Xin
    Xu Fang-Zhou
    Xu Min-Peng
    Yu Hai-Qing
    Wei Si-Wen
    Ming Dong
    PROGRESS IN BIOCHEMISTRY AND BIOPHYSICS, 2023, 50 (02) : 322 - 333
  • [23] Autoencoding of long-term scalp electroencephalogram to detect epileptic seizure for diagnosis support system
    Emami, Ali
    Kunii, Naoto
    Matsuo, Takeshi
    Shinozaki, Takashi
    Kawai, Kensuke
    Takahashi, Hirokazu
    COMPUTERS IN BIOLOGY AND MEDICINE, 2019, 110 : 227 - 233
  • [24] Seizure detection using scalp-EEG
    Baumgartner, Christoph
    Koren, Johannes P.
    EPILEPSIA, 2018, 59 : 14 - 22
  • [25] Deep Learning for Patient-Independent Epileptic Seizure Prediction Using Scalp EEG Signals
    Dissanayake, Theekshana
    Fernando, Tharindu
    Denman, Simon
    Sridharan, Sridha
    Fookes, Clinton
    IEEE SENSORS JOURNAL, 2021, 21 (07) : 9377 - 9388
  • [26] Geometric Deep Learning for Subject Independent Epileptic Seizure Prediction Using Scalp EEG Signals
    Dissanayake, Theekshana
    Fernando, Tharindu
    Denman, Simon
    Sridharan, Sridha
    Fookes, Clinton
    IEEE JOURNAL OF BIOMEDICAL AND HEALTH INFORMATICS, 2022, 26 (02) : 527 - 538
  • [27] Epileptic Seizure Prediction Using Convolutional Neural Networks and Fusion Features on Scalp EEG Signals
    Lan, Qixin
    Yao, Bin
    Qing, Tao
    IEICE TRANSACTIONS ON INFORMATION AND SYSTEMS, 2023, E106D (05) : 821 - 823
  • [28] Effects of prediction horizon on performance of automated seizure prediction algorithm in scalp EEG recordings
    Sackellares, JC
    Shiau, DS
    Carney, PR
    Principe, JC
    Pardalos, PM
    Suharitdamrong, W
    Iasemidis, LD
    EPILEPSIA, 2005, 46 : 219 - 219
  • [29] Seizure prediction algorithmon scalp EEG is sensitive to changes in state of vigilance
    Bruzzo, A.
    Gesierich, B.
    Rubboli, G.
    Tassinari, C.
    Birbaumer, N.
    EPILEPSIA, 2006, 47 : 106 - 106
  • [30] Automatic epileptic seizure prediction based on scalp EEG and ECG signals
    Hoyos-Osorio, Keider
    Castaneda-Gonzalez, Jairo
    Daza-Santacoloma, Genaro
    2016 XXI SYMPOSIUM ON SIGNAL PROCESSING, IMAGES AND ARTIFICIAL VISION (STSIVA), 2016,