Multiscale Superpixel-Level Subspace-Based Support Vector Machines for Hyperspectral Image Classification

被引:84
作者
Yu, Haoyang [1 ,2 ]
Gao, Lianru [3 ]
Liao, Wenzhi [4 ]
Zhang, Bing [1 ,2 ]
Pizurica, Aleksandra [4 ]
Philips, Wilfried [4 ]
机构
[1] Chinese Acad Sci, Inst Remote Sensing & Digital Earth, Key Lab Digital Earth Sci, Beijing 100094, Peoples R China
[2] Univ Chinese Acad Sci, Coll Resources & Environm, Beijing 100049, Peoples R China
[3] Chinese Acad Sci, Inst Remote Sensing & Digital Earth, Key Lab Digital Earth Sci, Beijing 100094, Peoples R China
[4] Univ Ghent, TELIN, IMEC, Dept Telecommun & Informat Proc, B-9000 Ghent, Belgium
基金
中国国家自然科学基金;
关键词
Hyperspectral image classification; multiscale superpixel segmentation; subspace projection; support vector machines (SVM); SPECTRAL-SPATIAL CLASSIFICATION;
D O I
10.1109/LGRS.2017.2755061
中图分类号
P3 [地球物理学]; P59 [地球化学];
学科分类号
0708 ; 070902 ;
摘要
This letter introduces a new spectral-spatial classification method for hyperspectral images. A multiscale superpixel segmentation is first used to model the distribution of classes based on spatial information. In this context, the original hyperspectral image is integrated with segmentation maps via a feature fusion process in different scales such that the pixel-level data can be represented by multiscale superpixel-level (MSP) data sets. Then, a subspace-based support vector machine (SVMsub) is adopted to obtain the classification maps with multiscale inputs. Finally, the classification result is achieved via a decision fusion process. The resulting method, called MSP-SVMsub, makes use of the spatial and spectral coherences, and contributes to better feature characterization. Experimental results based on two real hyperspectral data sets indicate that the MSP-SVMsub exhibits good performance compared with other related methods.
引用
收藏
页码:2142 / 2146
页数:5
相关论文
共 15 条
[1]   SLIC Superpixels Compared to State-of-the-Art Superpixel Methods [J].
Achanta, Radhakrishna ;
Shaji, Appu ;
Smith, Kevin ;
Lucchi, Aurelien ;
Fua, Pascal ;
Suesstrunk, Sabine .
IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2012, 34 (11) :2274-2281
[2]   WAVELET-FACE BASED SUBSPACE LDA METHOD TO SOLVE SMALL SAMPLE SIZE PROBLEM IN FACE RECOGNITION [J].
Chen, Wen-Sheng ;
Huang, Jian ;
Zou, Jin ;
Fang, Bin .
INTERNATIONAL JOURNAL OF WAVELETS MULTIRESOLUTION AND INFORMATION PROCESSING, 2009, 7 (02) :199-214
[3]   Advances in Spectral-Spatial Classification of Hyperspectral Images [J].
Fauvel, Mathieu ;
Tarabalka, Yuliya ;
Benediktsson, Jon Atli ;
Chanussot, Jocelyn ;
Tilton, James C. .
PROCEEDINGS OF THE IEEE, 2013, 101 (03) :652-675
[4]   Subspace-Based Support Vector Machines for Hyperspectral Image Classification [J].
Gao, Lianru ;
Li, Jun ;
Khodadadzadeh, Mahdi ;
Plaza, Antonio ;
Zhang, Bing ;
He, Zhijian ;
Yan, Huiming .
IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2015, 12 (02) :349-353
[5]   Multi-scale Feature Learning on Pixels and Super-pixels for Seminal Vesicles MRI Segmentation [J].
Gao, Qinquan ;
Asthana, Akshay ;
Tong, Tong ;
Rueckert, Daniel ;
Edwards, Philip Eddie .
MEDICAL IMAGING 2014: IMAGE PROCESSING, 2014, 9034
[6]   Superpixel-Based Multitask Learning Framework for Hyperspectral Image Classification [J].
Jia, Sen ;
Deng, Bin ;
Zhu, Jiasong ;
Jia, Xiuping ;
Li, Qingquan .
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2017, 55 (05) :2575-2588
[7]   SUPERPIXEL-LEVEL SPARSE REPRESENTATION-BASED CLASSIFICATION FOR HYPERSPECTRAL IMAGERY [J].
Jia, Sen ;
Deng, Bin ;
Jia, Xiuping .
2016 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS), 2016, :3302-3305
[8]   Spectral-Spatial Hyperspectral Image Segmentation Using Subspace Multinomial Logistic Regression and Markov Random Fields [J].
Li, Jun ;
Bioucas-Dias, Jose M. ;
Plaza, Antonio .
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2012, 50 (03) :809-823
[9]   Multi-scale superpixel spectral-spatial classification of hyperspectral images [J].
Li, Shanshan ;
Ni, Li ;
Jia, Xiuping ;
Gao, Lianru ;
Zhang, Bing ;
Peng, Man .
INTERNATIONAL JOURNAL OF REMOTE SENSING, 2016, 37 (20) :4905-4922
[10]   SUPERPIXEL-BASED MARKOV RANDOM FIELD FOR CLASSIFICATION OF HYPERSPECTRAL IMAGES [J].
Li, Shanshan ;
Jia, Xiuping ;
Zhang, Bing .
2013 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS), 2013, :3491-3493