Alkali-Metal Insertion Processes on Nanospheric Hard Carbon Electrodes: An Electrochemical Impedance Spectroscopy Study

被引:25
作者
Vali, R. [1 ]
Janes, A. [1 ]
Lust, E. [1 ]
机构
[1] Univ Tartu, Inst Chem, EE-50411 Tartu, Estonia
关键词
SODIUM-ION BATTERIES; NONAQUEOUS ELECTROLYTES; NEGATIVE ELECTRODES; LOW-TEMPERATURE; ANODE MATERIALS; HIGH-CAPACITY; LITHIUM; PERFORMANCE; DEGRADATION; GRAPHITE;
D O I
10.1149/2.0431711jes
中图分类号
O646 [电化学、电解、磁化学];
学科分类号
081704 ;
摘要
In this study, we report the results of electrochemical impedance spectroscopy data modelling of various battery half-cells with different alkali metal (Li, Na, K) salts. Test results of electrochemical half-cells were evaluated for the D-glucose derived hard carbon negative electrode in 1.0 M LiPF6 + EC:DMC (1:1 volume ratio), 1.0 M NaPF6 + EC:DMC (1:1), 1.0 M NaClO4 + PC, 0.8 M KPF6 + EC:DEC (1:1) and 0.8 M KPF6 + EC:DMC (1:1) solutions at 0.5 mV s(-1) potential scan rate measured within the potential region from 0.05 V to 1.2 V (vsMe/Me+) (where Me is Li, Na or K). Modelling of electrochemical impedance spectroscopy data was employed to characterize alkali metal insertion processes in/on D-glucose derived hard carbon anode. Detailed analysis of impedance data shows that Newman equivalent circuit modified with a constant phase element can be applied for calculation of impedance spectra and fitting of calculated data to experimental ones, using non-linear least square root fitting method. Equivalent circuit fit parameters depend strongly on electrolyte composition. Very slow processes have been observed for KPF6 + EC:DEC based half-cell. Comparatively quick metal-cation reduction and accumulation processes have been observed in NaClO4 + PC and LiPF6 + EC:DMC based half-cell anodes. (C) The Author(s) 2017. Published by ECS. All rights reserved.
引用
收藏
页码:E3429 / E3437
页数:9
相关论文
共 68 条
[11]   Negative electrodes for Na-ion batteries [J].
Dahbi, Mouad ;
Yabuuchi, Naoaki ;
Kubota, Kei ;
Tokiwa, Kazuyasu ;
Komaba, Shinichi .
PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2014, 16 (29) :15007-15028
[12]   Modeling a porous intercalation electrode with two characteristic particle sizes [J].
Darling, R ;
Newman, J .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 1997, 144 (12) :4201-4208
[13]   Study of the Most Relevant Aspects Related to Hard Carbons as Anode Materials for Na-ion Batteries, Compared with Li-ion Systems [J].
de la Llave, Ezequiel ;
Borgel, Valentina ;
Zinigrad, Ella ;
Chesneau, Frederick-Francois ;
Hartmann, Pascal ;
Sun, Yang-Kook ;
Aurbach, Doron .
ISRAEL JOURNAL OF CHEMISTRY, 2015, 55 (11-12) :1260-1274
[14]   Electrochemical performance of hard carbon negative electrodes for ionic liquid-based sodium ion batteries over a wide temperature range [J].
Ding, Changsheng ;
Nohira, Toshiyuki ;
Hagiwara, Rika ;
Fukunaga, Atsushi ;
Sakai, Shoichiro ;
Nitta, Koji .
ELECTROCHIMICA ACTA, 2015, 176 :344-349
[15]   Computer simulations of the impedance response of lithium rechargeable batteries [J].
Doyle, M ;
Meyers, JP ;
Newman, J .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2000, 147 (01) :99-110
[16]   Sodium and sodium-ion energy storage batteries [J].
Ellis, Brian L. ;
Nazar, Linda F. .
CURRENT OPINION IN SOLID STATE & MATERIALS SCIENCE, 2012, 16 (04) :168-177
[17]   Comprehensive Insights into the Reactivity of Electrolytes Based on Sodium Ions [J].
Eshetu, Gebrekidan Gebresilassie ;
Grugeon, Sylvie ;
Kim, Huikyong ;
Jeong, Sangsik ;
Wu, Liming ;
Gachot, Gregory ;
Laruelle, Stephane ;
Armand, Michel ;
Passerini, Stefano .
CHEMSUSCHEM, 2016, 9 (05) :462-471
[18]   CHEMICALLY MODIFIED PTFE-CARBON AS A SOLID-STATE OXYGEN SENSOR ELECTRODE MATERIAL [J].
GE, P ;
SIEBERT, E ;
FOULETIER, M .
SOLID STATE IONICS, 1988, 28 :1701-1704
[19]   Application of physical electric circuit modeling to characterize Li-ion battery electrochemical processes [J].
Greenleaf, M. ;
Li, H. ;
Zheng, J. P. .
JOURNAL OF POWER SOURCES, 2014, 270 :113-120
[20]  
Hirschorn B, 2010, J ELECTROCHEM SOC, V157, pC458, DOI 10.1149/1.3499565