Alkali-Metal Insertion Processes on Nanospheric Hard Carbon Electrodes: An Electrochemical Impedance Spectroscopy Study

被引:25
作者
Vali, R. [1 ]
Janes, A. [1 ]
Lust, E. [1 ]
机构
[1] Univ Tartu, Inst Chem, EE-50411 Tartu, Estonia
关键词
SODIUM-ION BATTERIES; NONAQUEOUS ELECTROLYTES; NEGATIVE ELECTRODES; LOW-TEMPERATURE; ANODE MATERIALS; HIGH-CAPACITY; LITHIUM; PERFORMANCE; DEGRADATION; GRAPHITE;
D O I
10.1149/2.0431711jes
中图分类号
O646 [电化学、电解、磁化学];
学科分类号
081704 ;
摘要
In this study, we report the results of electrochemical impedance spectroscopy data modelling of various battery half-cells with different alkali metal (Li, Na, K) salts. Test results of electrochemical half-cells were evaluated for the D-glucose derived hard carbon negative electrode in 1.0 M LiPF6 + EC:DMC (1:1 volume ratio), 1.0 M NaPF6 + EC:DMC (1:1), 1.0 M NaClO4 + PC, 0.8 M KPF6 + EC:DEC (1:1) and 0.8 M KPF6 + EC:DMC (1:1) solutions at 0.5 mV s(-1) potential scan rate measured within the potential region from 0.05 V to 1.2 V (vsMe/Me+) (where Me is Li, Na or K). Modelling of electrochemical impedance spectroscopy data was employed to characterize alkali metal insertion processes in/on D-glucose derived hard carbon anode. Detailed analysis of impedance data shows that Newman equivalent circuit modified with a constant phase element can be applied for calculation of impedance spectra and fitting of calculated data to experimental ones, using non-linear least square root fitting method. Equivalent circuit fit parameters depend strongly on electrolyte composition. Very slow processes have been observed for KPF6 + EC:DEC based half-cell. Comparatively quick metal-cation reduction and accumulation processes have been observed in NaClO4 + PC and LiPF6 + EC:DMC based half-cell anodes. (C) The Author(s) 2017. Published by ECS. All rights reserved.
引用
收藏
页码:E3429 / E3437
页数:9
相关论文
共 68 条
[1]   MEASUREMENT MODELS FOR ELECTROCHEMICAL IMPEDANCE SPECTROSCOPY .1. DEMONSTRATION OF APPLICABILITY [J].
AGARWAL, P ;
ORAZEM, ME ;
GARCIARUBIO, LH .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 1992, 139 (07) :1917-1927
[2]  
[Anonymous], 2015, BRIT GEOL SURV RISK
[3]  
[Anonymous], 2015, Mineral Commodity Summaries 2015, P196, DOI DOI 10.3133/70140094
[4]   On the behavior of different types of graphite anodes [J].
Aurbach, D ;
Teller, H ;
Koltypin, M ;
Levi, E .
JOURNAL OF POWER SOURCES, 2003, 119 :2-7
[5]  
Barker J., 2016, M ABSTR, P796
[6]   Predicting capacity of hard carbon anodes in sodium-ion batteries using porosity measurements [J].
Bommier, Clement ;
Luo, Wei ;
Gao, Wen-Yang ;
Greaney, Alex ;
Ma, Shengqian ;
Ji, Xiulei .
CARBON, 2014, 76 :165-174
[7]   Sodium Ion Insertion in Hollow Carbon Nanowires for Battery Applications [J].
Cao, Yuliang ;
Xiao, Lifen ;
Sushko, Maria L. ;
Wang, Wei ;
Schwenzer, Birgit ;
Xiao, Jie ;
Nie, Zimin ;
Saraf, Laxmikant V. ;
Yang, Zhengguo ;
Liu, Jun .
NANO LETTERS, 2012, 12 (07) :3783-3787
[8]  
Carmichael R. S., 1989, PRACTICAL HDB PHYS P, P760
[9]   An EIS based study of a Ni-MH battery prototype. Modeling and identification analysis [J].
Castro, E. B. ;
Cuscueta, D. J. ;
Milocco, R. H. ;
Ghilarducci, A. A. ;
Salva, H. R. .
INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2010, 35 (11) :5991-5998
[10]   A mathematical model for the lithium-ion negative electrode solid electrolyte interphase [J].
Christensen, J ;
Newman, J .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2004, 151 (11) :A1977-A1988